A Study of an Anomaly Detection System for Small Hydropower Data considering Multivariate Time Series

被引:0
|
作者
Yang, Bo [1 ]
Lyu, Zhongliang [1 ]
Wei, Hua [1 ]
机构
[1] Guangxi Univ, Sch Elect Engn, Nanning 530004, Guangxi, Peoples R China
关键词
Decision making - Information management;
D O I
10.1155/2024/8108861
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data anomaly detection in small hydropower stations is an important research area because it positively affects the reliability of optimal scheduling and subsequent analytical studies of small hydropower station clusters. Although many anomaly detection algorithms have been introduced in the data preprocessing stage in various research areas, there is still little research on effective and highly reliable anomaly detection systems for practical applications in small hydropower stations. Therefore, this paper proposes a real-time data anomaly detection system for small hydropower clusters (RDADS-SHC) considering multiple time series. It addresses the difficulties of timely detection, alerting, and management of real-time data anomalies (errors, omissions, and so on) in existing small hydropower stations. It proposes a real-time data anomaly detection algorithm for small hydropower stations integrated with the Z-score and dynamic time warping, which can detect and process abnormal information more accurately and efficiently, thereby improving the stability and reliability of data sampling. The paper proposes a Keepalived-based hot-standby RDADS-SHC deployment model with m (m >= 2) units. It can automatically remove and restart faulty services and switch to their standbys, which significantly improve the reliability of the proposed system, ensuring the safe and stable operation of related functional services. This paper can detect anomalous data more accurately, and the system is more stable and reliable in a cluster detection environment. The actual operation has shown that compared with existing anomaly detection systems, the architecture and algorithms proposed in this paper can detect anomalous data more accurately, and the system is more stable and reliable in the small hydropower cluster detection environment. It solves abnormal data management in small hydropower stations and provides reliable support for subsequent analysis and decision-making.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] AttVAE: A Novel Anomaly Detection Framework for Multivariate Time Series
    Liu, Yi
    Han, Yanni
    An, Wei
    SCIENCE OF CYBER SECURITY, SCISEC 2022, 2022, 13580 : 407 - 420
  • [32] Warping resilient robust anomaly detection for multivariate time series
    Abilasha, S.
    Bhadra, Sahely
    MACHINE LEARNING, 2025, 114 (02)
  • [33] An Empirical Analysis of Anomaly Detection Methods for Multivariate Time Series
    Li, Dongwen
    Zhang, Shenglin
    Sun, Yongqian
    Guo, Yang
    Che, Zeyu
    Chen, Shiqi
    Zhong, Zhenyu
    Liang, Minghan
    Shao, Minyi
    Li, Mingjie
    Liu, Shuyang
    Zhang, Yuzhi
    Pei, Dan
    2023 IEEE 34TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING, ISSRE, 2023, : 57 - 68
  • [34] Nonparametric Statistics in Multivariate Time Series for Cognitive Anomaly Detection
    Gorokhov, V. I.
    Kholodnyak, D. V.
    PROCEEDINGS OF THE XIX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM 2016), 2016, : 435 - 436
  • [35] Combining Transformer with a Discriminator for Anomaly Detection in Multivariate Time Series
    Maru, Chihiro
    Brandherm, Boris
    Kobayashi, Ichiro
    2022 JOINT 12TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 23RD INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS&ISIS), 2022,
  • [36] Coupled Attention Networks for Multivariate Time Series Anomaly Detection
    Xia, Feng
    Chen, Xin
    Yu, Shuo
    Hou, Mingliang
    Liu, Mujie
    You, Linlin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2024, 12 (01) : 240 - 253
  • [37] Label-Free Multivariate Time Series Anomaly Detection
    Zhou, Qihang
    He, Shibo
    Liu, Haoyu
    Chen, Jiming
    Meng, Wenchao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) : 3166 - 3179
  • [38] Anomaly Detection of Multivariate Time Series Based on Metric Learning
    Wang, Hongkai
    Feng, Jun
    Peng, Liangying
    Pan, Sichen
    Zhao, Shuai
    Jin, Helin
    DATA SCIENCE (ICPCSEE 2022), PT I, 2022, 1628 : 94 - 110
  • [39] DUMA: Dual Mask for Multivariate Time Series Anomaly Detection
    Pan, Jinwei
    Ji, Wendi
    Zhong, Bo
    Wang, Pengfei
    Wang, Xiaoling
    Chen, Jin
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2433 - 2442
  • [40] Conditional normalizing flow for multivariate time series anomaly detection
    Guan, Siwei
    He, Zhiwei
    Ma, Shenhui
    Gao, Mingyu
    ISA TRANSACTIONS, 2023, 143 : 231 - 243