A Study of an Anomaly Detection System for Small Hydropower Data considering Multivariate Time Series

被引:0
|
作者
Yang, Bo [1 ]
Lyu, Zhongliang [1 ]
Wei, Hua [1 ]
机构
[1] Guangxi Univ, Sch Elect Engn, Nanning 530004, Guangxi, Peoples R China
关键词
Decision making - Information management;
D O I
10.1155/2024/8108861
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data anomaly detection in small hydropower stations is an important research area because it positively affects the reliability of optimal scheduling and subsequent analytical studies of small hydropower station clusters. Although many anomaly detection algorithms have been introduced in the data preprocessing stage in various research areas, there is still little research on effective and highly reliable anomaly detection systems for practical applications in small hydropower stations. Therefore, this paper proposes a real-time data anomaly detection system for small hydropower clusters (RDADS-SHC) considering multiple time series. It addresses the difficulties of timely detection, alerting, and management of real-time data anomalies (errors, omissions, and so on) in existing small hydropower stations. It proposes a real-time data anomaly detection algorithm for small hydropower stations integrated with the Z-score and dynamic time warping, which can detect and process abnormal information more accurately and efficiently, thereby improving the stability and reliability of data sampling. The paper proposes a Keepalived-based hot-standby RDADS-SHC deployment model with m (m >= 2) units. It can automatically remove and restart faulty services and switch to their standbys, which significantly improve the reliability of the proposed system, ensuring the safe and stable operation of related functional services. This paper can detect anomalous data more accurately, and the system is more stable and reliable in a cluster detection environment. The actual operation has shown that compared with existing anomaly detection systems, the architecture and algorithms proposed in this paper can detect anomalous data more accurately, and the system is more stable and reliable in the small hydropower cluster detection environment. It solves abnormal data management in small hydropower stations and provides reliable support for subsequent analysis and decision-making.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Contextual anomaly detection for multivariate time series data
    Kim, Hyojoong
    Kim, Heeyoung
    QUALITY ENGINEERING, 2023, 35 (04) : 686 - 695
  • [2] Anomaly detection in multivariate time series of drilling data
    Altindal, Mehmet Cagri
    Nivlet, Philippe
    Tabib, Mandar
    Rasheed, Adil
    Kristiansen, Tron Golder
    Khosravanian, Rasool
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 237
  • [3] Clustering-based anomaly detection in multivariate time series data
    Li, Jinbo
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    APPLIED SOFT COMPUTING, 2021, 100
  • [4] Clustering-based anomaly detection in multivariate time series data
    Li, Jinbo
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    Applied Soft Computing, 2021, 100
  • [5] Anomaly Detection Paradigm for Multivariate Time Series Data Mining for Healthcare
    Razaque, Abdul
    Abenova, Marzhan
    Alotaibi, Munif
    Alotaibi, Bandar
    Alshammari, Hamoud
    Hariri, Salim
    Alotaibi, Aziz
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [6] Anomaly Detection Method for Multivariate Time Series Data Based on BLTranAD
    Zhang, Chuanlei
    Wu, Songlin
    Gao, Ming
    Li, Yubo
    Shi, Gongcheng
    Li, Yicong
    Ma, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 16 - 26
  • [7] Unsupervised Deep Anomaly Detection for Industrial Multivariate Time Series Data
    Liu, Wenqiang
    Yan, Li
    Ma, Ningning
    Wang, Gaozhou
    Ma, Xiaolong
    Liu, Peishun
    Tang, Ruichun
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [8] Generative Anomaly Detection in Multivariate Time Series
    Hoh, M.
    Schöttl, A.
    Schaub, H.
    Leuze, N.
    Automation, Robotics and Communications for Industry 4.0/5.0, 2023, 2023 : 171 - 174
  • [9] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [10] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    PeerJ Computer Science, 2024, 10