Physics-guided deep learning-based inversion for airborne electromagnetic data

被引:1
|
作者
Wu, Sihong [1 ,2 ]
Huang, Qinghua [1 ,2 ]
Zhao, Li [1 ,2 ]
机构
[1] Peking Univ, Sch Earth & Space Sci, Dept Geophys, Beijing 100871, Peoples R China
[2] Peking Univ, Hebei Hongshan Natl Observ Thick Sediments & Seism, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Electromagnetic theory; Non-linear electromagnetics; Inverse theory; Machine learning; Neural networks; fuzzy logic; Numerical solutions; NETWORKS;
D O I
10.1093/gji/ggae244
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Earth's subsurface structure provides critical insights into sustainable resource management and geologic evolution. The airborne electromagnetic (AEM) method is an efficient data acquisition technique and can be used to image the underground resistivity structure with high spatial resolution. However, inversion of the increasingly huge volume of AEM data poses a heavy computational burden. In this study, we develop a hybrid deep learning-based approach by using the physics-guided neural network (PGNN) which incorporates the governing physical laws into the loss function to solve the AEM inverse problem. The PGNN integrates the strength of data-driven method for representation learning with electromagnetic laws and allows for the underlying physical constraints to be strictly satisfied. We validate the effectiveness of our approach using both synthetic and field datasets. Compared with the classic Gauss-Newton method, our PGNN inversion system shows strong robustness against multiple noise sources and reduces the risk of being trapped in local extrema. Moreover, the PGNN-inverted results are physically more consistent with the AEM observations compared to the purely data-driven approach. Application to the field AEM data from Northern Australia demonstrates that the PGNN-based inversion framework effectively estimates the subsurface electrical properties with considerable lateral continuity and significantly higher efficiency, completing the inversion of more than 2734000 AEM soundings taking only minutes on a common PC. Our proposed PGNN-based method shows great promise for large-scale underground resistivity imaging, and the well-identified subsurface resistivity structure can effectively improve our understanding of resource distributions and geological hazards.
引用
收藏
页码:1774 / 1789
页数:16
相关论文
共 50 条
  • [1] Physics-Guided Deep Learning 3-D Inversion Based on Magnetic Data
    Shi, Xiaoqing
    Wang, Zhirui
    Lu, Xue
    Cheng, Peirui
    Zhang, Luning
    Zhao, Liangjin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [2] Instantaneous Inversion of Airborne Electromagnetic Data Based on Deep Learning
    Wu, Sihong
    Huang, Qinghua
    Zhao, Li
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (10)
  • [3] Multitask Learning-Driven Physics-Guided Deep Learning Magnetotelluric Inversion
    Liu, Wei
    Wang, He
    Xi, Zhenzhu
    Wang, Liang
    Chen, Chaoyang
    Guo, Tao
    Yan, Maoshan
    Wang, Tongtong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [4] PHYSICS-GUIDED UNSUPERVISED DEEP-LEARNING SEISMIC INVERSION WITH UNCERTAINTY QUANTIFICATION
    Zhang, Yu
    Singh, Sagar
    Thanoon, David
    Devarakota, Pandu
    Jin, Long
    Tsvankin, Ilya
    JOURNAL OF SEISMIC EXPLORATION, 2023, 32 (03): : 257 - 270
  • [5] Physics-guided deep learning for seismic inversion with hybrid training and uncertainty analysis
    Sun, Jian
    Innanen, Kristopher A.
    Huang, Chao
    GEOPHYSICS, 2021, 86 (03) : R303 - R317
  • [6] An inversion problem for optical spectrum data via physics-guided machine learning
    Park, Hwiwoo
    Park, Jun H.
    Hwang, Jungseek
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Learning dynamical systems from data: An introduction to physics-guided deep learning
    Yu, Rose
    Wang, Rui
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (27)
  • [8] Probabilistic seismic inversion based on physics-guided deep mixture density network
    QianHao Sun
    ZhaoYun Zong
    Xin Li
    Petroleum Science, 2024, (03) : 1611 - 1631
  • [9] Probabilistic seismic inversion based on physics-guided deep mixture density network
    Sun, Qian-Hao
    Zong, Zhao-Yun
    Li, Xin
    PETROLEUM SCIENCE, 2024, 21 (03) : 1611 - 1631
  • [10] Physics-guided and Neural Network Learning-based Sliding Mode Control
    Bao, Yajie
    Thesma, Vaishnavi
    Velni, Javad Mohammadpour
    IFAC PAPERSONLINE, 2021, 54 (20): : 705 - 710