Effect of Vibration Mixing on the Mechanical Properties of Carbon Nanotube-Reinforced Ultra-High-Performance Concrete

被引:2
|
作者
Zhou, Li [1 ]
Yin, Jiangang [2 ]
Wang, Wei [1 ]
Liu, Fucai [3 ]
Xiao, Min [3 ]
Yang, Yibo [4 ,5 ]
Cui, Haibo [3 ]
机构
[1] State Grid Hubei Econ Res Inst, Wuhan 430077, Peoples R China
[2] State Grid Hubei Elect Power Co Ltd, Wuhan 430048, Peoples R China
[3] Guangdong Gaiteqi New Mat Technol Co Ltd, Qingyuan 511600, Peoples R China
[4] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
[5] South China Univ Technol, State Key Lab Subtrop Bldg & Urban Sci, Guangzhou 510640, Peoples R China
关键词
vibration mixing; ultra-high-performance concrete; carbon nanotubes; mechanical properties;
D O I
10.3390/buildings14082545
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vibration mixing, characterized by the high-frequency vibrations of the mixing shaft, can enhance the mechanical properties of ultra-high-performance concrete (UHPC). However, the effects of vibration mixing on carbon nanotube (CNT)-reinforced UHPC have not been previously reported. To investigate the impact of vibration mixing on the properties of CNT-reinforced UHPC, a comparative study was conducted using different vibration mixing durations and twin-shaft mixing. The results indicate that for CNT-reinforced UHPC, vibration mixing achieves better flowability, higher wet apparent density, and superior mechanical properties in shorter mixing times compared to twin-shaft mixing, making it a more favorable method. Considering vibration mixing times ranging from 3 to 7 min, the optimal time was found to be 3 min, during which the axial compressive strength increased by 3.3%, the elastic limit tensile strength and tensile strength improved by 14.6% and 15.8%, respectively, and the initial cracking strength and flexural strength increased by 12.6% and 13.4%, respectively, compared to values after 10 min of twin-shaft mixing.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] High-Performance Carbon Nanotube-Reinforced Bioplastic
    Ramontja, James
    Ray, Suprakas Sinha
    Pillai, Sreejarani K.
    Luyt, Adriaan S.
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2009, 294 (12) : 839 - 846
  • [22] Effect of Polyoxymethylene Fiber on the Mechanical Properties and Abrasion Resistance of Ultra-High-Performance Concrete
    Tan, Lixin
    Yang, Jun
    Li, Chuanxi
    Zhang, Gaozhan
    Ding, Qingjun
    Sun, Daosheng
    Zhang, Yongyuan
    MATERIALS, 2023, 16 (21)
  • [23] High performance carbon nanotube-reinforced magnesium nanocomposite
    Ding, Yunpeng
    Xu, Jilei
    Hu, Jinbiao
    Gao, Qiancheng
    Guo, Xiaoqin
    Zhang, Rui
    An, Linan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 771 (771):
  • [24] Thermal effects on physico-mechanical properties of ultra-high-performance fiber-reinforced concrete
    Kamen, Aicha
    Denarie, Emmanuel
    Bruehwiler, Eugen
    ACI MATERIALS JOURNAL, 2007, 104 (04) : 415 - 423
  • [25] Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete Containing Synthetic and Mineral Fibers
    Bahmani, Hadi
    Mostofinejad, Davood
    Dadvar, Sayyed Ali
    ACI MATERIALS JOURNAL, 2020, 117 (03) : 155 - 168
  • [26] Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites
    Xiao, K. Q.
    Zhang, L. C.
    Zarudi, I.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2007, 67 (02) : 177 - 182
  • [27] The Influence of Materials on the Mechanical Properties of Ultra-High-Performance Concrete (UHPC): A Literature Review
    da Silva, Mariana Lage
    Prado, Lisiane Pereira
    Felix, Emerson Felipe
    de Sousa, Alex Micael Dantas
    Aquino, Davi Peretta
    MATERIALS, 2024, 17 (08)
  • [28] Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite
    Manjula Sharma
    Vimal Sharma
    International Journal of Minerals, Metallurgy, and Materials, 2016, 23 : 222 - 233
  • [29] Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite
    Sharma, Manjula
    Sharma, Vimal
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2016, 23 (02) : 222 - 233
  • [30] Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite
    Manjula Sharma
    Vimal Sharma
    InternationalJournalofMineralsMetallurgyandMaterials, 2016, 23 (02) : 222 - 233