Gauge-invariant magnetic charges in linearised gravity

被引:4
作者
Hull, Chris [1 ]
Hutt, Maxwell L. [1 ]
Lindstrom, Ulf [1 ,2 ,3 ]
机构
[1] Imperial Coll London, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
[2] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden
[3] Uppsala Univ, Ctr Geometry & Phys, Box 480, SE-75106 Uppsala, Sweden
关键词
charges; dimensions; solutions; cohomologies; magnetic; Penrose; TENSOR-FIELDS; DUALITY;
D O I
10.1088/1361-6382/ad718a
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Linearised gravity has magnetic charges carried by (linearised) Kaluza-Klein monopoles. A gauge-invariant expression is found for these charges that is similar to Penrose's gauge-invariant expression for the ADM charges. A systematic search is made for other gauge-invariant charges.
引用
收藏
页数:46
相关论文
共 28 条
[1]   STABILITY OF GRAVITY WITH A COSMOLOGICAL CONSTANT [J].
ABBOTT, LF ;
DESER, S .
NUCLEAR PHYSICS B, 1982, 195 (01) :76-96
[2]   Tensor gauge fields in arbitrary representations of GL(D,R).: Duality and Poincare lemma [J].
Bekaert, X ;
Boulanger, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 245 (01) :27-67
[3]   Generalized Symmetries for Generalized Gravitons [J].
Benedetti, Valentin ;
Bueno, Pablo ;
Magan, Javier M. .
PHYSICAL REVIEW LETTERS, 2023, 131 (11)
[4]   Generalized symmetries and Noether's theorem in QFT [J].
Benedetti, Valentin ;
Casini, Horacio ;
Magan, Javier M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
[5]   Generalized symmetries of the graviton [J].
Benedetti, Valentin ;
Casini, Horacio ;
Magan, Javier M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
[6]   On completeness and generalized symmetries in quantum field theory [J].
Casini, Horacio ;
Magan, Javier M. .
MODERN PHYSICS LETTERS A, 2021, 36 (36)
[7]  
Cheung C, 2024, Arxiv, DOI [arXiv:2403.01837, 10.1007/JHEP10(2024)007, DOI 10.1007/JHEP10(2024)007]
[8]   Exotic tensor gauge theory and duality [J].
de Medeiros, PF ;
Hull, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (02) :255-273
[9]   Tensor fields of mixed young symmetry type and N-complexes [J].
Dubois-Violette, M ;
Henneaux, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 226 (02) :393-418
[10]   Generalized cohomology for irreducible tensor fields of mixed Young symmetry type [J].
Dubois-Violette, M ;
Henneaux, M .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 49 (03) :245-252