On the construction of certain odd degree irreducible polynomials over finite fields

被引:0
作者
Cil, Melek [1 ]
Kirlar, Baris Bulent [2 ]
机构
[1] Burdur Mehmet Akif Ersoy Univ, Dept Math, TR-15200 Burdur, Turkiye
[2] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkiye
关键词
Irreducible polynomials; Finite fields; Hilbert Theorem 90;
D O I
10.1007/s10623-024-01479-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For an odd prime power q, let Fq2=Fq(alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q<^>2}=\mathbb {F}_q(\alpha )$$\end{document}, alpha 2=t is an element of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <^>2=t\in \mathbb {F}_q$$\end{document} be the quadratic extension of the finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}. In this paper, we consider the irreducible polynomials F(x)=xk-c1xk-1+c2xk-2-& ctdot;-c2qx2+c1qx-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(x)=x<^>k-c_1x<^>{k-1}+c_2x<^>{k-2}-\cdots -c_{2}<^>qx<^>2+c_{1}<^>qx-1$$\end{document} over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q<^>2}$$\end{document}, where k is an odd integer and the coefficients ci\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_i$$\end{document} are in the form ci=ai+bi alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_i=a_i+b_i\alpha $$\end{document} with at least one bi not equal 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_i\ne 0$$\end{document}. For a given such irreducible polynomial F(x) over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q<^>2}$$\end{document}, we provide an algorithm to construct an irreducible polynomial G(x)=xk-A1xk-1+A2xk-2-& ctdot;-Ak-2x2+Ak-1x-Ak\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(x)=x<^>k-A_1x<^>{k-1}+A_2x<^>{k-2}-\cdots -A_{k-2}x<^>2+A_{k-1}x-A_k$$\end{document} over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}, where the Ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_i$$\end{document}'s are explicitly given in terms of the ci\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_i$$\end{document}'s. This gives a bijective correspondence between irreducible polynomials over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q<^>2}$$\end{document} and Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}. This fact generalizes many recent results on this subject in the literature.
引用
收藏
页码:4085 / 4097
页数:13
相关论文
共 13 条
[1]  
Adleman LM., 1986, STOC '86: Proceedings of the eighteenth annual ACM symposium on Theory of computing, P350, DOI DOI 10.1145/12130.12166
[2]   GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS [J].
Ahn, Youngwoo ;
Kim, Kitae .
KOREAN JOURNAL OF MATHEMATICS, 2011, 19 (03) :263-272
[3]  
Cil M., 2016, P 9 INT INF SEC CRYP, P143
[4]  
Cohen S. D., 1992, Designs, Codes and Cryptography, V2, P169, DOI 10.1007/BF00124895
[5]  
COHEN SD, 1969, PROC CAMB PHILOS S-M, V66, P335
[6]   CERTAIN CUBIC POLYNOMIALS OVER FINITE FIELDS [J].
Kim, Hyung Don ;
Kim, Jae Moon ;
Yie, Ikkwon .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (01) :1-12
[7]   A correspondence of certain irreducible polynomials over finite fields [J].
Kim, Kitae ;
Yie, Ikkwon .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (02) :384-395
[8]   ON THE k-TH ORDER LFSR SEQUENCE WITH PUBLIC KEY CRYPTOSYSTEMS [J].
Kirlar, Bari Bulent ;
Cil, Melek .
MATHEMATICA SLOVACA, 2017, 67 (03) :601-610
[9]   Irreducible compositions of polynomials over finite fields [J].
Kyuregyan, Melsik K. ;
Kyureghyan, Gohar M. .
DESIGNS CODES AND CRYPTOGRAPHY, 2011, 61 (03) :301-314
[10]   Iterated constructions of irreducible polynomials over finite fields with linearly independent roots [J].
Kyuregyan, MK .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (03) :323-341