A Memetic Algorithm with Adaptive Operator Selection for Graph Coloring

被引:2
作者
Grelier, Cyril [1 ]
Goudet, Olivier [1 ]
Hao, Jin-Kao [1 ]
机构
[1] Univ Angers, LERIA, 2 Blvd Lavoisier, F-49045 Angers, France
来源
EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, EVOCOP 2024 | 2024年 / 14632卷
关键词
Graph Coloring; Memetic Algorithm; Hyperheuristics; TABU SEARCH;
D O I
10.1007/978-3-031-57712-3_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a memetic algorithm with adaptive operator selection for k-coloring and weighted vertex coloring. Our method uses online selection to adaptively determine the couple of crossover and local search operators to apply during the search to improve the efficiency of the algorithm. This leads to better results than without the operator selection and allows us to find a new coloring with 404 colors for C2000.9, one of the largest and densest instances of the classical DIMACS coloring benchmarks. The proposed method also finds three new best solutions for the weighted vertex coloring problem. We investigate the impacts of the different algorithmic variants on both problems.
引用
收藏
页码:65 / 80
页数:16
相关论文
共 30 条
  • [1] [Anonymous], 1997, Computers and intractability: A guide to the theory of np-completeness
  • [2] Auer P., 2003, Journal of Machine Learning Research, V3, P397, DOI 10.1162/153244303321897663
  • [3] A graph coloring heuristic using partial solutions and a reactive tabu scheme
    Bloechliger, Ivo
    Zufferey, Nicolas
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (03) : 960 - 975
  • [4] Hyper-heuristics: a survey of the state of the art
    Burke, Edmund K.
    Gendreau, Michel
    Hyde, Matthew
    Kendall, Graham
    Ochoa, Gabriela
    Oezcan, Ender
    Qu, Rong
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2013, 64 (12) : 1695 - 1724
  • [5] Recent advances in selection hyper-heuristics
    Drake, John H.
    Kheiri, Ahmed
    Ozcan, Ender
    Burke, Edmund K.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 285 (02) : 405 - 428
  • [6] A grouping hyper-heuristic framework: Application on graph colouring
    Elhag, Anas
    Oezcan, Ender
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (13) : 5491 - 5507
  • [7] Hybrid evolutionary algorithms for graph coloring
    Galinier, P
    Hao, JK
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 1999, 3 (04) : 379 - 397
  • [8] Simulating non-stationary operators in search algorithms
    Goeffon, Adrien
    Lardeux, Frederic
    Saubion, Frederic
    [J]. APPLIED SOFT COMPUTING, 2016, 38 : 257 - 268
  • [9] Goudet O, 2023, PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, P1927
  • [10] A deep learning guided memetic framework for graph coloring problems
    Goudet, Olivier
    Grelier, Cyril
    Hao, Jin-Kao
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 258