Unravelling the diagnostic pathology and molecular biomarkers in lung cancer

被引:2
作者
Charpidou, Andriani [1 ]
Hardavella, Georgia [2 ]
Boutsikou, Efimia [3 ]
Panagiotou, Emmanouil [1 ]
Simsek, Gokcen Omeroglu [4 ]
Verbeke, Koen [5 ]
Xhemalaj, Daniela [6 ]
Domaga, Joanna [7 ]
机构
[1] Natl & Kapodistrian Univ Athens, Med Sch, Dept Internal Med & Lab 3, Oncol Unit, Athens, Greece
[2] Sotiria Athens Chest Dis Hosp, Dept Resp Med 4 9, Athens, Greece
[3] Theageneio Anticanc Hosp, Pulm Oncol Dept, Thessaloniki, Greece
[4] Dokuz Eylul Univ, Fac Med, Dept Resp Dis, Izmir, Turkiye
[5] CUH St Pierre, Pulmonol Dept, Brussels, Belgium
[6] Univ Med, Dept Pathol, Tirana, Albania
[7] Maria Sklodowska Curielodowska Curie Med Acad, Warsaw, Poland
关键词
INHIBITORS;
D O I
10.1183/20734735.0192-2023
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
The progress in lung cancer treatment is closely interlinked with the progress in diagnostic methods. There are four steps before commencing lung cancer treatment: estimation of the patient's ' s performance status, assessment of disease stage (tumour, node, metastasis), recognition of histological subtype, and detection of biomarkers. The resection rate in lung cancer is <30% and >70% of patients need systemic therapy, which is individually adjusted. Accurate histological diagnosis is very important and it is the basis of further molecular diagnosis. In many cases only small biopsy samples are available and the rules for their assessment are defined in this review. The use of immunochemistry with at least thyroid transcription factor 1 (TTF1) and p40 is decisive in distinction between lung adenocarcinoma and squamous cell carcinoma. Molecular diagnosis and detection of known driver mutations is necessary for introducing targeted therapy and use of multiplex gene panel assays using next-generation sequencing is recommended. Immunotherapy with checkpoint inhibitors is the second promising method of systemic therapy with best results in tumours with high programmed death-ligand 1 (PD-L1) expression on cancer cells. Finally, the determination of a full tumour pattern will be possible using artificial intelligence in the near future.
引用
收藏
页数:11
相关论文
共 53 条
[1]  
[Anonymous], Who classification of tumours of the oral cavity and oropharynx
[2]   Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer [J].
Antonia, S. J. ;
Villegas, A. ;
Daniel, D. ;
Vicente, D. ;
Murakami, S. ;
Hui, R. ;
Yokoi, T. ;
Chiappori, A. ;
Lee, K. H. ;
de Wit, M. ;
Cho, B. C. ;
Bourhaba, M. ;
Quantin, X. ;
Tokito, T. ;
Mekhail, T. ;
Planchard, D. ;
Kim, Y. -C. ;
Karapetis, C. S. ;
Hiret, S. ;
Ostoros, G. ;
Kubota, K. ;
Gray, J. E. ;
Paz-Ares, L. ;
de Castro Carpeno, J. ;
Wadsworth, C. ;
Melillo, G. ;
Jiang, H. ;
Huang, Y. ;
Dennis, P. A. ;
Ozguroglu, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 377 (20) :1919-1929
[3]   Recent advances in non-small cell lung cancer targeted therapy; an update review [J].
Araghi, Mahmood ;
Mannani, Reza ;
Maleki, Ali Heidarnejad ;
Hamidi, Adel ;
Rostami, Samaneh ;
Safa, Salar Hozhabri ;
Faramarzi, Fatemeh ;
Khorasani, Sahar ;
Alimohammadi, Mina ;
Tahmasebi, Safa ;
Akhavan-Sigari, Reza .
CANCER CELL INTERNATIONAL, 2023, 23 (01)
[4]   UNcommon EGFR Mutations: International Case Series on Efficacy of Osimertinib in Real-Life Practice in First-LiNe Setting (UNICORN) [J].
Bar, Jair ;
Peled, Nir ;
Schokrpur, Shiruyeh ;
Wolner, Mirjana ;
Rotem, Ofer ;
Girard, Nicolas ;
Nana, Frank Aboubakar ;
Derijcke, Sofie ;
Kian, Waleed ;
Patel, Sandip ;
Gantz-Sorotsky, Hadas ;
Zer, Alona ;
Moskovitz, Mor ;
Metro, Giulio ;
Rottenberg, Yakir ;
Calles, Antonio ;
Hochmair, Maximilian ;
Cuppens, Kristof ;
Decoster, Lynn ;
Reck, Martin ;
Limon, Dror ;
Rodriguez, Estelamari ;
Astaras, Christoforos ;
Bettini, Adrienne ;
Hafliger, Simon ;
Addeo, Alfredo .
JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (02) :169-180
[5]   Machine-learning-based classification of the histological subtype of non-small-cell lung cancer using MRI texture analysis [J].
Bebas, Ewelina ;
Borowska, Marta ;
Derlatka, Marcin ;
Oczeretko, Edward ;
Hladunski, Marcin ;
Szumowski, Piotr ;
Mojsak, Malgorzata .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 66
[6]   Next Generation Sequencing for Gene Fusion Analysis in Lung Cancer: A Literature Review [J].
Bruno, Rossella ;
Fontanini, Gabriella .
DIAGNOSTICS, 2020, 10 (08)
[7]   Artificial Intelligence in Lung Cancer Screening: The Future Is Now [J].
Cellina, Michaela ;
Cacioppa, Laura Maria ;
Ce, Maurizio ;
Chiarpenello, Vittoria ;
Costa, Marco ;
Vincenzo, Zakaria ;
Pais, Daniele ;
Bausano, Maria Vittoria ;
Rossini, Nicolo ;
Bruno, Alessandra ;
Floridi, Chiara .
CANCERS, 2023, 15 (17)
[8]   Using deep-learning radiomics to predict lung cancer histology. [J].
Chaunzwa, Tafadzwa Lawrence ;
Christiani, David C. ;
Lanuti, Michael ;
Shafer, Andrea ;
Diao, Nancy ;
Mak, Raymond H. ;
Aerts, Hugo .
JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (15)
[9]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[10]   The Eighth Edition Lung Cancer Stage Classification [J].
Detterbeck, Frank C. ;
Boffa, Daniel J. ;
Kim, Anthony W. ;
Tanoue, Lynn T. .
CHEST, 2017, 151 (01) :193-203