Enhancing intracranial efficacy prediction of osimertinib in non-small cell lung cancer: a novel approach through brain MRI radiomics

被引:1
作者
Tang, Xin [1 ]
Li, Yuan [1 ]
Qian, Wen-Lei [1 ]
Han, Pei-Lun [1 ]
Yan, Wei-Feng [1 ]
Yang, Zhi-Gang [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China
来源
FRONTIERS IN NEUROLOGY | 2024年 / 15卷
基金
中国国家自然科学基金;
关键词
MRI radiomics; osimertinib; intracranial efficacy; non-small cell lung cancer; predictive model; ACQUIRED-RESISTANCE; EGFR MUTATION; METASTASES; SYSTEM; NSCLC; TKI;
D O I
10.3389/fneur.2024.1399983
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction Osimertinib, a third-generation EGFR-TKI, is known for its high efficacy against brain metastases (BM) in non-small cell lung cancer (NSCLC) due to its ability to penetrate the blood-brain barrier. This study aims to evaluate the use of brain MRI radiomics in predicting the intracranial efficacy to osimertinib in NSCLC patients with BM. Materials and methods This study analyzed 115 brain metastases from NSCLC patients with the EGFR-T790M mutation treated with second-line osimertinib. The primary endpoint was intracranial response, and the secondary endpoint was intracranial progression-free survival (iPFS). We performed tumor delineation, image preprocessing, and radiomics feature extraction. Using a 5-fold cross-validation strategy, we built radiomic models with eight feature selectors and eight machine learning classifiers. The models' performance was evaluated by the area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis. Results The dataset of 115 brain metastases was divided into training and validation sets in a 7:3 ratio. The radiomic model utilizing the mRMR feature selector and stepwise logistic regression classifier showed the highest predictive accuracy, with AUCs of 0.879 for the training cohort and 0.786 for the validation cohort. This model outperformed a clinical-MRI morphological model, which included age, ring enhancement, and peritumoral edema (AUC: 0.794 for the training cohort and 0.697 for the validation cohort). The radiomic model also showed strong performance in calibration and decision curve analyses. Using a radiomic-score threshold of 199, patients were classified into two groups with significantly different median iPFS (3.0 months vs. 15.4 months, p < 0.001). Conclusion This study demonstrates that MRI radiomics can effectively predict the intracranial efficacy of osimertinib in NSCLC patients with brain metastases. This approach holds promise for assisting clinicians in personalizing treatment strategies.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Central Nervous System Metastases from Non-Small Cell Lung Cancer [J].
Ahluwalia, Manmeet S. ;
Becker, Kevin ;
Levy, Benjamin P. .
ONCOLOGIST, 2018, 23 (10) :1199-1209
[2]   Contrast-enhanced T1-weighted image radiomics of brain metastases may predict EGFR mutation status in primary lung cancer [J].
Ahn, Sung Jun ;
Kwon, Hyeokjin ;
Yang, Jin-Ju ;
Park, Mina ;
Cha, Yoon Jin ;
Suh, Sang Hyun ;
Lee, Jong-Min .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]   Perilesional edema in brain metastases as predictive factor of response to systemic therapy in non-small cell lung cancer patients: a preliminary study [J].
Alemany, Montse ;
Domenech, Marta ;
Argyriou, Andreas A. ;
Vilarino, Noelia ;
Majos, Carles ;
Naval-Baudin, Pablo ;
Lucas, Anna ;
Palmero, Ramon ;
Simo, Marta ;
Nadal, Ernest ;
Bruna, Jordi .
ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (08)
[4]   Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity [J].
Ballard, Peter ;
Yates, James W. T. ;
Yang, Zhenfan ;
Kim, Dong-Wan ;
Yang, James Chih-Hsin ;
Cantarini, Mireille ;
Pickup, Kathryn ;
Jordan, Angela ;
Hickey, Mike ;
Grist, Matthew ;
Box, Matthew ;
Johnstrom, Peter ;
Varnas, Katarina ;
Malmquist, Jonas ;
Thress, Kenneth S. ;
Janne, Pasi A. ;
Cross, Darren .
CLINICAL CANCER RESEARCH, 2016, 22 (20) :5130-5140
[5]   MRI radiomic features are associated with survival in melanoma brain metastases treated with immune checkpoint inhibitors [J].
Bhatia, Ankush ;
Birger, Maxwell ;
Veeraraghavan, Harini ;
Um, Hyemin ;
Tixier, Florent ;
McKenney, Anna Sophia ;
Cugliari, Marina ;
Caviasco, Annalise ;
Bialczak, Angelica ;
Malani, Rachna ;
Flynn, Jessica ;
Zhang, Zhigang ;
Yang, T. Jonathan ;
Santomasso, Bianca D. ;
Shoushtari, Alexander N. ;
Young, Robert J. .
NEURO-ONCOLOGY, 2019, 21 (12) :1578-1586
[6]   Acquired Resistance to First-Line Afatinib and the Challenges of Prearranged Progression Biopsies [J].
Campo, Meghan ;
Gerber, David ;
Gainor, Justin F. ;
Heist, Rebecca S. ;
Temel, Jennifer S. ;
Shaw, Alice T. ;
Fidias, Panos ;
Muzikansky, Alona ;
Engelman, Jeffrey A. ;
Sequist, Lecia V. .
JOURNAL OF THORACIC ONCOLOGY, 2016, 11 (11) :2022-2026
[7]   Predicting Survival Duration With MRI Radiomics of Brain Metastases From Non-small Cell Lung Cancer [J].
Chen, Bihong T. ;
Jin, Taihao ;
Ye, Ningrong ;
Mambetsariev, Isa ;
Wang, Tao ;
Wong, Chi Wah ;
Chen, Zikuan ;
Rockne, Russell C. ;
Colen, Rivka R. ;
Holodny, Andrei I. ;
Sampath, Sagus ;
Salgia, Ravi .
FRONTIERS IN ONCOLOGY, 2021, 11
[8]   Preclinical Comparison of the Blood-brain barrier Permeability of Osimertinib with Other EGFR TKIs [J].
Colclough, Nicola ;
Chen, Kan ;
Johnstrom, Peter ;
Strittmatter, Nicole ;
Yan, Yumei ;
Wrigley, Gail L. ;
Schou, Magnus ;
Goodwin, Richard ;
Varnas, Katarina ;
Adua, Sally J. ;
Zhao, Minghui ;
Nguyen, Don X. ;
Maglennon, Gareth ;
Barton, Peter ;
Atkinson, James ;
Zhang, Lin ;
Janefeldt, Annika ;
Wilson, Joanne ;
Smith, Aaron ;
Takano, Akihiro ;
Arakawa, Ryosuke ;
Kondrashov, Mikhail ;
Malmquist, Jonas ;
Revunov, Evgeny ;
Vazquez-Romero, Ana ;
Moein, Mohammad Mahdi ;
Windhorst, Albert D. ;
Karp, Natasha A. ;
Finlay, M. Raymond, V ;
Ward, Richard A. ;
Yates, James W. T. ;
Smith, Paul D. ;
Farde, Lars ;
Cheng, Zack ;
Cross, Darren A. E. .
CLINICAL CANCER RESEARCH, 2021, 27 (01) :189-201
[9]   Pretreatment 18F-FDG PET/CT Radiomics Predict Local Recurrence in Patients Treated with Stereotactic Body Radiotherapy for Early-Stage Non-Small Cell Lung Cancer: A Multicentric Study [J].
Dissaux, Gurvan ;
Visvikis, Dimitris ;
Da-ano, Ronrick ;
Pradier, Olivier ;
Chajon, Enrique ;
Barillot, Isabelle ;
Duverge, Loig ;
Masson, Ingrid ;
Abgral, Ronan ;
Ribeiro, Maria-Joao Santiago ;
Devillers, Anne ;
Pallardy, Amandine ;
Fleury, Vincent ;
Mahe, Marc-Andre ;
De Crevoisier, Renaud ;
Hatt, Mathieu ;
Schick, Ulrike .
JOURNAL OF NUCLEAR MEDICINE, 2020, 61 (06) :814-820
[10]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577