Ultrawide-Bandgap Semiconductors for High-Frequency Devices

被引:1
作者
Pavlidis, Spyridon [1 ]
Medwig, Greg [1 ]
Thomas, Michael [2 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27606 USA
[2] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA
基金
美国国家科学基金会;
关键词
Silicon carbide; Power amplifiers; HEMTs; Silicon; Wide band gap semiconductors; Microwave transistors; Gallium nitride; ELECTRON-MOBILITY TRANSISTORS; FIELD-EFFECT TRANSISTORS; POWER-DENSITY; SATURATION VELOCITY; DIAMOND; TRANSPORT; W/MM; GAN; SIMULATION; NITRIDE;
D O I
10.1109/MMM.2024.3428193
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cellular base stations for 5G/6G networks, as well as satellites and long-range radar for commercial, aerospace, and defense systems all demandpower amplifiers(PAs) with high output power density and high efficiency. While silicon (Si), silicon germanium (SiGe), and gallium arsenide (GaAs) technologies are well established, it is now impossible to overlook gallium nitride (GaN) in applications where maximizing output power with minimal footprint is paramount. Backed by its deployment for solid-state lighting, power converters, and PAs, GaN technology has seen tremendous advancements in the last 20-30 years. The principal device for microwave and millimeter-wave (mm-wave) applications is the AlGaN/GaN high-electron-mobility transistor (HEMT), which is most commonly fabricated on either silicon carbide (SiC) or Si substrates. AlGaN/GaN HEMTs with an output power density of 40 W/mm [1] have been reported up to the X band, while highly scaled transistors with f(t)/f(MAX) of >450 GHz have also been achieved [2]. In the last decade, a new wave of innovations has also emerged, such as the replacement of AlGaN barriers with scandium aluminum nitride (ScAlN) and the development of N-polar GaN technology with 8-W/mm power density at 94 GHz [3].
引用
收藏
页码:68 / 79
页数:12
相关论文
共 71 条
[1]   Temperature dependent transport properties in GaN, A1xGa1-xN, and InxGa1-xN semiconductors [J].
Anwar, AFM ;
Wu, SL ;
Webster, RT .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (03) :567-572
[2]   Al0.85Ga0.15N/Al0.70Ga0.30N High Electron Mobility Transistors with Schottky Gates and Large On/Off Current Ratio over Temperature [J].
Baca, Albert G. ;
Klein, Brianna A. ;
Allerman, Andrew A. ;
Armstrong, Andrew M. ;
Douglas, Erica A. ;
Stephenson, Chad A. ;
Fortune, Torben R. ;
Kaplar, Robert J. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2017, 6 (12) :Q161-Q165
[3]   Transport properties of a thin GaN channel formed in an Al0.9Ga0.1N/GaN heterostructure grown on AlN/sapphire template [J].
Bassaler, Julien ;
Comyn, Remi ;
Bougerol, Catherine ;
Cordier, Yvon ;
Medjdoub, Farid ;
Ferrandis, Philippe .
JOURNAL OF APPLIED PHYSICS, 2022, 131 (12)
[4]   Fabrication of AlGaAs/GaAs/diamond heterojunctions for diamond-collector HBTs [J].
Cho, Sang June ;
Liu, Dong ;
Hardy, Aaron ;
Kim, Jisoo ;
Gong, Jiarui ;
Herrera-Rodriguez, Cristian J. ;
Swinnich, Edward ;
Konstantinou, Xenofon ;
Oh, Geum-Yoon ;
Kim, Doo Gun ;
Shin, Jae Cheol ;
Papapolymerou, John ;
Becker, Michael ;
Seo, Jung-Hun ;
Albrecht, John D. ;
Grotjohn, Timothy A. ;
Ma, Zhenqiang .
AIP ADVANCES, 2020, 10 (12)
[5]   Smart Power Devices and ICs Using GaAs and Wide and Extreme Bandgap Semiconductors [J].
Chow, T. Paul ;
Omura, Ichiro ;
Higashiwaki, Masataka ;
Kawarada, Hiroshi ;
Pala, Vipindas .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (03) :856-873
[6]   Analysis of 2D Transport and Performance Characteristics for Lateral Power Devices Based on AlGaN Alloys [J].
Coltrin, Michael E. ;
Baca, Albert G. ;
Kaplar, Robert J. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2017, 6 (11) :S3114-S3118
[7]   Diamond Field-Effect Transistors With V2O5-Induced Transfer Doping: Scaling to 50-nm Gate Length [J].
Crawford, Kevin G. ;
Weil, James D. ;
Shah, Pankaj B. ;
Ruzmetov, Dmitry A. ;
Neupane, Mahesh R. ;
Kingkeo, Khamsouk ;
Birdwell, A. Glen ;
Ivanov, Tony G. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (06) :2270-2275
[8]   Thermally Stable, High Performance Transfer Doping of Diamond using Transition Metal Oxides [J].
Crawford, Kevin G. ;
Qi, Dongchen ;
McGlynn, Jessica ;
Ivanov, Tony G. ;
Shah, Pankaj B. ;
Weil, James ;
Tallaire, Alexandre ;
Ganin, Alexey Y. ;
Moran, David A. J. .
SCIENTIFIC REPORTS, 2018, 8
[9]   High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al2O3 [J].
Daicho, Akira ;
Saito, Tatsuya ;
Kurihara, Shinichiro ;
Hiraiwa, Atsushi ;
Kawarada, Hiroshi .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (22)
[10]   Diamond power devices: state of the art, modelling, figures of merit and future perspective [J].
Donato, N. ;
Rouger, N. ;
Pernot, J. ;
Longobardi, G. ;
Udrea, F. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (09)