Parameter Identification of PMSG-Based Wind Turbine Based on Sensitivity Analysis and Improved Gray Wolf Optimization

被引:1
作者
Zhai, Bingjie [1 ]
Ou, Kaijian [2 ]
Wang, Yuhong [1 ]
Cao, Tian [1 ]
Dai, Huaqing [1 ]
Zheng, Zongsheng [1 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
[2] Guangdong Prov Key Lab Intelligent Operat & Contro, Guangzhou 510663, Peoples R China
关键词
improved gray wolf optimization; parameter identification; sensitivity analysis; wind turbine;
D O I
10.3390/en17174361
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the large-scale integration of wind power, it is essential to establish an electromagnetic transient (EMT) model of a wind turbine system. Focusing on the problem of the difficulty in obtaining the parameters of the direct-driven permanent magnet synchronous generator (PMSG) model, this manuscript proposes a method based on trajectory sensitivity analysis and improved gray wolf optimization (IGWO) for identifying the parameters of the PMSG EMT model. First, a model of a PMSG wind turbine is established on an EMT simulation platform. Then, the key parameters of the model are determined based on the sensitivity analysis. Five control parameters are selected as the key parameters for their higher sensitivity indexes. Finally, the key parameters are accurately identified, using the proposed IGWO algorithm. The final case study demonstrates that the proposed IGWO algorithm has better optimization performance compared with the GWO algorithm and particle swarm optimization (PSO) algorithm. In addition, the simulation waveforms show that the identified parameters are accurate and applicable to other operating conditions.
引用
收藏
页数:15
相关论文
共 31 条
  • [1] Abdelrahem M, 2015, 2015 INTERNATIONAL CONFERENCE ON CLEAN ELECTRICAL POWER (ICCEP), P226, DOI 10.1109/ICCEP.2015.7177628
  • [2] Belmokhtar K, 2015, CAN CON EL COMP EN, P965, DOI 10.1109/CCECE.2015.7129406
  • [3] Dynamic Equivalent Model Development to Improve the Operation Efficiency of Wind Farm
    Cheng, Xueyang
    Lee, Wei-Jen
    Sahni, Mandhir
    Cheng, Yunzhi
    Lee, Lyndon K.
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2016, 52 (04) : 2759 - 2767
  • [4] Gao S., 2023, Small Spec. Electr. Mach, V51, P65
  • [5] Gao S., 2024, Electr. Mach. Control Appl, V51, P97
  • [6] Gu R., 2020, P 2020 12 IEEE PES A, P1
  • [7] An Improved Gray Wolf Optimizer MPPT Algorithm for PV System With BFBIC Converter Under Partial Shading
    Guo, Ke
    Cui, Lichuang
    Mao, Mingxuan
    Zhou, Lin
    Zhang, Qianjin
    [J]. IEEE ACCESS, 2020, 8 : 103476 - 103490
  • [8] A Novel Grid-Forming Strategy for Self-Synchronous PMSG under Nearly 100% Renewable Electricity
    Hu, Pan
    Jiang, Kezhen
    Ji, Xiaotong
    Cai, Yuze
    Wang, Bo
    Liu, Dan
    Cao, Kan
    Wang, Wei
    [J]. ENERGIES, 2023, 16 (18)
  • [9] Calibrating Parameters of Power System Stability Models Using Advanced Ensemble Kalman Filter
    Huang, Renke
    Diao, Ruisheng
    Li, Yuanyuan
    Sanchez-Gasca, Juan
    Huang, Zhenyu
    Thomas, Brian
    Etingov, Pavel
    Kincic, Slaven
    Wang, Shaobu
    Fan, Rui
    Matthews, Gordon
    Kosterev, Dmitry
    Yang, Steve
    Zhao, Junbo
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (03) : 2895 - 2905
  • [10] Sparse voltage amplitude measurement based fault location in large-scale photovoltaic power plants
    Jia, Ke
    Gu, Chenjie
    Li, Lun
    Xuan, Zhengwen
    Bi, Tianshu
    Thomas, David
    [J]. APPLIED ENERGY, 2018, 211 : 568 - 581