Hierarchical porous carbon with honeycomb-like structure as high-performance anode materials for lithium ion storage

被引:0
|
作者
Hu, Shengchun [1 ]
Zhang, Gaoyue [1 ]
Sun, Kang [1 ]
Wang, Ao [1 ]
Sun, Yunjuan [1 ]
Xu, Wei [1 ]
Fan, Mengmeng [2 ]
Yuan, Qixin [2 ]
Hao, Fan [3 ]
Huang, Xiaohua [3 ]
Jiang, Jianchun [1 ]
机构
[1] Chinese Acad Forestry, Inst Chem Ind Forest Prod, Nanjing 210042, Peoples R China
[2] Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Peoples R China
[3] Northwest A&F Univ, Coll Forestry, Yangling 712100, Peoples R China
关键词
Honeycomb-like structure; Cork activated carbon; Electrochemistry; Lithium ion storage; ACTIVATED CARBONS; ENERGY-STORAGE; SURFACE-AREA; BIOMASS; ELECTRODES; CONVERSION; WASTE; OXIDE;
D O I
10.1016/j.indcrop.2024.119303
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Bio-based carbon materials are promising anode materials for lithium-ion storage due to their low cost, high capacity and structural designability. In this study, cork activated carbon (CAC) was synthesized using a two-step carbonization-activation method. CAC has a fluffy honeycomb structure composed of porous carbon nanosheets (100-200 nm) with an ultra-high specific surface area (SSA) of 2913.58 m2/g, maximum mesoporous volume of 1.55 cm3 g- 1, and minimum average pore size of 2.53 nm. The unique porous structure of CAC provides more active sites for the surface redox reaction, which is conducive to lithium-ion embedding and de-embedding. As an anode material, CAC exhibits super-efficient lithium-ion storage performance with high reversible specific capacity (2132.6 mAh g- 1 at 0.1 A g- 1), excellent rate performance (256.5 mAh g- 1 at 10 A g- 1), and long cycle stability (376.64 mAh g- 1 after 1000 cycles at 5 A g- 1). It was discovered that mesopores are more effective in increasing capacity, while micropores buffer the embedded lithium stress. The energy storage of CAC is based on surface control, which improves the lithium storage capacity as the specific surface area increases. A higher degree of graphitization improves the electron transport efficiency, providing a new method for constructing high-performance anodes for lithium-ion storage.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] N-doped honeycomb-like porous carbon towards high-performance supercapacitor
    Wang, Feng
    Chen, Lian
    Li, Huiling
    Duan, Gaigai
    He, Shuijian
    Zhang, Lin
    Zhang, Guoying
    Zhou, Zhengping
    Jiang, Shaohua
    CHINESE CHEMICAL LETTERS, 2020, 31 (07) : 1986 - 1990
  • [12] In situ construction of porous Ni/Co-MOF@Carbon cloth electrode with honeycomb-like structure for high-performance energy storage
    Yunjian Chen
    Ni Wang
    Wencheng Hu
    Sridhar Komarneni
    Journal of Porous Materials, 2019, 26 : 921 - 929
  • [13] In situ construction of porous Ni/Co-MOF@Carbon cloth electrode with honeycomb-like structure for high-performance energy storage
    Chen, Yunjian
    Wang, Ni
    Hu, Wencheng
    Komarneni, Sridhar
    JOURNAL OF POROUS MATERIALS, 2019, 26 (03) : 921 - 929
  • [14] Porous silicon in carbon cages as high-performance lithium-ion battery anode Materials
    Zhang, Yaguang
    Du, Ning
    Zhu, Sijia
    Chen, Yifan
    Lin, Yangfan
    Wu, Shali
    Yang, Deren
    ELECTROCHIMICA ACTA, 2017, 252 : 438 - 445
  • [15] Three-dimensional honeycomb-like porous carbon embedded with Ge nanoparticles anode composites for ultrastable lithium storage
    Liu, Xiaoling
    Zhang, Keyu
    Wang, Qianwen
    Cui, Dingfang
    Gao, Geng
    Wang, Chong
    Hu, Junxian
    Yao, Yaochun
    Li, Yongjia
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
  • [16] Preparation and Electrochemical Performance of a Honeycomb-like Porous Anode Material
    Li, Xin-xiu
    Hou, Jiao
    Wang, Xing-wei
    Liu, Xiong-fei
    Hou, Chun-ping
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (10): : 9619 - 9625
  • [17] A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors
    Liang, Qinghua
    Ye, Ling
    Huang, Zheng-Hong
    Xu, Qiang
    Bai, Yu
    Kang, Feiyu
    Yang, Quan-Hong
    NANOSCALE, 2014, 6 (22) : 13831 - 13837
  • [18] Encapsulation of CoSx Nanocrystals into N/S Co-Doped Honeycomb-Like 3D Porous Carbon for High-Performance Lithium Storage
    Yin, Bo
    Cao, Xinxin
    Pan, Anqiang
    Luo, Zhigao
    Dinesh, Selvakumaran
    Lin, Jiande
    Tang, Yan
    Liang, Shuquan
    Cao, Guozhong
    ADVANCED SCIENCE, 2018, 5 (09)
  • [19] Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries
    Zhang, Yanjia
    Li, Xue
    Dong, Peng
    Wu, Gang
    Xiao, Jie
    Zeng, Xiaoyuan
    Zhang, Yingjie
    Sun, Xueliang
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (49) : 42796 - 42803
  • [20] Porous Honeycomb-like Carbon Prepared by a Facile Sugar-Blowing Method for High-Performance Lithium-Sulfur Batteries
    Su, Wenxiao
    Feng, Wangjun
    Cao, Yue
    Chen, Linjing
    Li, Miaomiao
    Song, Changkun
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (06): : 6005 - 6014