Channel Estimation for FDD Massive MIMO With Complex Residual Denoising Network

被引:0
作者
Zhao, Quanyu [1 ]
Zeng, Xiaoping [1 ]
Fan, Zhixuan [1 ]
Zhang, Qingqing [1 ]
Li, Weiji [1 ]
机构
[1] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Channel estimation; Estimation; Training; Convolution; Downlink; Noise reduction; Noise; deep learning; compressive sensing; FDD; massive MIMO; PREDICTION;
D O I
10.1109/LWC.2024.3400520
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to improve the performance of downlink channel estimation in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems, we propose a channel estimation method based on compressed sensing (CS) and deep learning (DL). To eliminate signal noise, we employ a complex residual denoising network called CR-DnCNN on top of CS processing, which can greatly reduce the computational cost of the network by combining complex convolution and fewer residual blocks. Simulation results show that it can significantly reduce the pilot overhead compared with the classical algorithm and has lower MMSE and BER in the channel estimation process.
引用
收藏
页码:2070 / 2074
页数:5
相关论文
共 17 条
  • [1] MIMO Channel Estimation Using Score-Based Generative Models
    Arvinte, Marius
    Tamir, Jonathan I.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (06) : 3698 - 3713
  • [2] 5G-Advanced Toward 6G: Past, Present, and Future
    Chen, Wanshi
    Lin, Xingqin
    Lee, Juho
    Toskala, Antti
    Sun, Shu
    Chiasserini, Carla Fabiana
    Liu, Lingjia
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (06) : 1592 - 1619
  • [3] A Compressive Sensing and Deep Learning-Based Time-Varying Channel Estimation for FDD Massive MIMO Systems
    Fan, Jiancun
    Liang, Peizhe
    Jiao, Zihan
    Han, Xiaodong
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8729 - 8738
  • [4] mmWave RIS-Assisted SIMO Channel Estimation Based on Global Attention Residual Network
    Feng, Hao
    Zhao, Yuping
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (07) : 1179 - 1183
  • [5] Guo J., 2023, Digit. Signal Process., V137
  • [6] Compressive Sensing-Based Adaptive Active User Detection and Channel Estimation: Massive Access Meets Massive MIMO
    Ke, Malong
    Gao, Zhen
    Wu, Yongpeng
    Gao, Xiqi
    Schober, Robert
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (68) : 764 - 779
  • [7] Deep Residual Learning Meets OFDM Channel Estimation
    Li, Lianjun
    Chen, Hao
    Chang, Hao-Hsuan
    Liu, Lingjia
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (05) : 615 - 618
  • [8] Experimental Demonstration of Compressive Sensing-Based Channel Estimation for MIMO-OFDM VLC
    Lin, Bangjiang
    Ghassemlooy, Zabih
    Xu, Junxiang
    Lai, Qiwei
    Shen, Xiaohuan
    Tang, Xuan
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (07) : 1027 - 1030
  • [9] Downlink Channel Prediction for Time-Varying FDD Massive MIMO Systems
    Peng, Wei
    Li, Wengang
    Wang, Wei
    Wei, Xiao
    Jiang, Tao
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2019, 13 (05) : 1090 - 1102
  • [10] Estimation and Mitigation of Channel Non-Reciprocity in Massive MIMO
    Raeesi, Orod
    Gokceoglu, Ahmet
    Valkama, Mikko
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (10) : 2711 - 2723