High-power quantum cascade lasers for 8 μm spectral range

被引:0
作者
Dudelev, V. V. [1 ]
Cherotchenko, E. D. [1 ]
Vrubel, I. I. [1 ]
Mikhailov, D. A. [1 ]
Chistyakov, D., V [1 ]
Mylnikov, V. Yu [1 ]
Losev, S. N. [1 ]
Kognovitskaya, E. A. [1 ]
Lutetskiy, A., V [1 ]
Slipchenko, S. O. [1 ]
Gladyshev, A. G. [2 ]
Podgaetskiy, K. A. [3 ]
Babichev, A., V [4 ]
Papylev, D. S. [4 ]
Andreev, A. Yu [3 ]
Yarotskaya, I., V [3 ]
Ladugin, M. A. [3 ]
Marmalyuk, A. A. [3 ]
Novikov, I. I. [2 ,4 ]
Kuchinskii, V., I [1 ]
Karachinsky, L. Ya [2 ,4 ]
Pikhtin, N. A. [1 ]
Egorov, A. Yu [2 ]
Sokolovskii, G. S. [1 ]
机构
[1] Ioffe Inst, 26 Polytekhn Skaya Str, St Petersburg 194021, Russia
[2] Connector Opt LLC, 16 Lit B Domostroitelnaya Str, St Petersburg 194292, Russia
[3] MF Stelmakh POLYUS Res & Dev Inst, 3 Vvedenskogo Str, Moscow 117342, Russia
[4] ITMO Univ, 49 Bldg A Kronverksky Pr, St Petersburg 197101, Russia
来源
SEMICONDUCTOR LASERS AND LASER DYNAMICS XI | 2024年 / 13002卷
基金
俄罗斯科学基金会;
关键词
quantum-cascade laser; high-power; lattice-matched; strain-balanced designs;
D O I
10.1117/12.3022397
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a study of high-power quantum-cascade lasers (QCL) for 8 mu m spectral range with active regions of lattice-matched to InP substrate and strain-balanced designs. The use of the strained quantum well/barrier pairs made it possible to increase the energy barrier between the upper laser level and continuum by similar to 200 meV. Our experiments show that utilization of the strain-balanced design of the active region makes it possible to more than double the characteristic temperature T-0 to 253 K from 125 K for the lattice-matched design. In pulsed mode, QCLs with strain-balanced active region demonstrated high efficiency of 12% and high output optical power of 21 W (over 10 W per facet). This is the highest value of the optical power demonstrated to date in 8 mu m spectral region to the best of our knowledge.
引用
收藏
页数:4
相关论文
共 18 条
  • [1] [Anonymous], 2014, The Atmosphere and Ionosphere: Elementary Processes, Monitoring, and Ball Lightning
  • [2] Heterostructures of Quantum-Cascade Lasers Based on Composite Active Regions
    Babichev A.V.
    Gladyshev A.G.
    Denisov D.V.
    Dudelev V.V.
    Mikhailov D.A.
    Slipchenko S.O.
    Lyutetskii A.V.
    Karachinsky L.Y.
    Novikov I.I.
    Andreev A.Y.
    Yarotskaya I.V.
    Podgaetskiy K.A.
    Marmalyuk A.A.
    Padalitsa A.A.
    Ladugin M.A.
    Pikhtin N.A.
    Sokolovskii G.S.
    Egorov A.Y.
    [J]. Bulletin of the Russian Academy of Sciences: Physics, 2023, 87 (06) : 839 - 844
  • [3] Heterostructures of Quantum-Cascade Laser for the Spectral Range of 4.6 μm for Obtaining a Continuous-Wave Lasing Mode
    Babichev, A. V.
    Gladyshev, A. G.
    Dudelev, V. V.
    Karachinsky, L. Ya.
    Novikov, I. I.
    Denisov, D. V.
    Slipchenko, S. O.
    Lyutetskii, A. V.
    Pikhtin, N. A.
    Sokolovskii, G. S.
    Egorov, A. Yu.
    [J]. TECHNICAL PHYSICS LETTERS, 2020, 46 (05) : 442 - 445
  • [4] High-Power Quantum-Cascade Lasers Emitting in the 8-μm Wavelength Range
    Babichev, A., V
    Dudelev, V. V.
    Gladyshev, A. G.
    Mikhailov, D. A.
    Kurochkin, A. S.
    Kolodeznyi, E. S.
    Bougrov, V. E.
    Nevedomskiy, V. N.
    Karachinsky, L. Ya
    Novikov, I. I.
    Denisov, D., V
    Ionov, A. S.
    Slipchenko, S. O.
    Lutetskiy, A., V
    Pikhtin, N. A.
    Sokolovskii, G. S.
    Egorov, A. Yu
    [J]. TECHNICAL PHYSICS LETTERS, 2019, 45 (07) : 735 - 738
  • [5] Room Temperature Lasing of Multi-Stage Quantum-Cascade Lasers at 8 μm Wavelength
    Babichev, A. V.
    Gladyshev, A. G.
    Kurochkin, A. S.
    Kolodeznyi, E. S.
    Sokolovskii, G. S.
    Bougrov, V. E.
    Karachinsky, L. Ya.
    Novikov, I. I.
    Bousseksou, A. G.
    Egorov, A. Yu.
    [J]. SEMICONDUCTORS, 2018, 52 (08) : 1082 - 1085
  • [6] High-Power Quantum Cascade Lasers Emitting at 8 μm: Technology and Analysis
    Cherotchenko, Evgeniia
    Dudelev, Vladislav
    Mikhailov, Dmitry
    Savchenko, Grigorii
    Chistyakov, Dmitriy
    Losev, Sergey
    Babichev, Andrey
    Gladyshev, Andrey
    Novikov, Innokentiy
    Lutetskiy, Andrey
    Veselov, Dmitry
    Slipchenko, Sergey
    Denisov, Dmitry
    Andreev, Andrey
    Yarotskaya, Irina
    Podgaetskiy, Konstantin
    Ladugin, Maksim
    Marmalyuk, Aleksandr
    Pikhtin, Nikita
    Karachinsky, Leonid
    Kuchinskii, Vladimir
    Egorov, Anton
    Sokolovskii, Grigorii
    [J]. NANOMATERIALS, 2022, 12 (22)
  • [7] Cousin P., 2022, Instrumentation and Measurement Technologies for Water Cycle Management, P251, DOI [10.1007/978-3-031-08262-7_11, DOI 10.1007/978-3-031-08262-7_11]
  • [8] Quantum cascade lasers for the 8-μm spectral range: technology, design, and analysis
    Dudelev, V. V.
    Cherotchenko, E.
    Vrubel, I. I.
    Mikhailov, D. A.
    Chistyakov, D., V
    Mylnikov, V. Yu
    Losev, S. N.
    Kognovitskaya, E. A.
    Babichev, A., V
    Lutetskiy, A., V
    Slipchenko, S. O.
    Pikhtin, N. A.
    Gladyshev, A. G.
    Podgaetskiy, K. A.
    Andreev, A. Yu
    Yarotskaya, I., V
    Ladugin, M. A.
    Marmalyuk, A. A.
    Novikov, I. I.
    Kuchinskii, V., I
    Karachinsky, L. Ya
    Egorov, A. Yu
    Sokolovskii, G. S.
    [J]. PHYSICS-USPEKHI, 2024, 67 (01) : 92 - 98
  • [9] Performance evaluation of free space optical link driven by gain switched temperature dependent quantum cascade lasers
    Gopinath, S.
    Ashok, P.
    Madhan, M. Ganesh
    [J]. LASER PHYSICS LETTERS, 2021, 18 (06)
  • [10] Kolker D. B., 2022, 2022 INT C LAS OPT I, DOI [10.1109/ICLO54117.2022.9840076, DOI 10.1109/ICLO54117.2022.9840076]