A special form of solution to complex valued Benjamin-Ono equations

被引:3
作者
Huh, Hyungjin [1 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
Complex valued Benjamin-Ono equation; Finite time blowup; Cole-Hopf transformation; GLOBAL WELL-POSEDNESS; BLOW-UP; SOLITONS;
D O I
10.1016/j.physd.2024.134171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a special form of solution to the complex valued Benjamin-Ono (cBO) equation. Under the special form of solution involving Hilbert transform, the complex valued (modified) Benjamin-Ono equations are equivalent to the quadratic (cubic) derivative Schr & ouml;dinger equations. The soliton interaction dynamics is used to construct a finite time blowup solution of the cBO equation on R. We also find static solutions. Applying Cole-Hopf transformation to quadratic derivative Schr & ouml;dinger equation, we derive a linear Schr & ouml;dinger equation with a special form of initial data from which some solutions to cBO equation can be obtained by an inverse transform.
引用
收藏
页数:5
相关论文
共 18 条
[1]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[2]   UNIQUENESS AND RELATED ANALYTIC PROPERTIES FOR THE BENJAMIN-ONO-EQUATION - A NONLINEAR NEUMANN PROBLEM IN THE PLANE [J].
AMICK, CJ ;
TOLAND, JF .
ACTA MATHEMATICA, 1991, 167 (1-2) :107-126
[4]   Blowup and ill-posedness for the complex, periodic KdV equation [J].
Bona, J. L. ;
Weissler, F. B. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (06)
[5]   Pole dynamics of interacting solitons and blowup of complex-valued solutions of KdV [J].
Bona, Jerry L. ;
Weissler, Fred B. .
NONLINEARITY, 2009, 22 (02) :311-349
[6]   ALGEBRAIC INTERNAL WAVE SOLITONS AND THE INTEGRABLE CALOGERO-MOSER-SUTHERLAND N-BODY PROBLEM [J].
CHEN, HH ;
LEE, YC ;
PEREIRA, NR .
PHYSICS OF FLUIDS, 1979, 22 (01) :187-188
[7]   Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrodinger equation on the circle [J].
Chung, Jaywan ;
Guo, Zihua ;
Kwon, Soonsik ;
Oh, Tadahiro .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (05) :1273-1297
[8]  
Guo ZH, 2011, ADV DIFFERENTIAL EQU, V16, P1087
[9]  
Ionescu AD, 2007, CONTEMP MATH, V428, P61
[10]   Global well-posedness of the Benjamin-Ono equation in low-regularity spaces [J].
Ionescu, Alexandru D. ;
Kenig, Carlos E. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) :753-798