Complementary Series-connected STT-MTJ for Time-based Computing-in-Memory

被引:0
作者
Zhou, Rong [1 ]
Liu, Bo [1 ]
Si, Xin [1 ]
Cai, Hao [1 ]
机构
[1] Southeast Univ, Sch Integrated Circuits, Nanjing 210096, Peoples R China
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024 | 2024年
基金
中国国家自然科学基金;
关键词
STT-MRAM; Computing-in; memory; time-based computing; time-to-digital converter; TDC; ADC;
D O I
10.1109/ISCAS58744.2024.10557936
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Computing-in-memory (CIM) based on spin transfer torque magnetic random access memory (STT-MRAM) is promised to be an effective way to overcome the "memory wall" bottleneck. In this work, we proposed a novel complementary series-connected magnetic tunnel junction (STT-MTJ) structure for time-based Computing-in-Memory (CST-CIM). The bit-cell with four transistors and one MTJ is utilized to establish a series-connected structure to improve the limited resistance of MTJ, which can be applied for high-linearity and sufficient-margin multiply-and-accumulate (MAC) operation. In addition, for peripheral computing circuit, a customized successive-approximation-register time-to-digital converter (SAR-TDC) is used for high energy efficiency and low latency. To optimize the multi-bit MAC operation, we proposed a novel hardware friendly signed binary weight mapping strategy, which can provide the computing flexibility with 1-8bit quantization. Simulation result shows the proposed CST-CIM architecture can achieve low computation latency of 5ns and peak energy efficiency of 106.7 TOPS/W.
引用
收藏
页数:5
相关论文
共 21 条
  • [1] Computing in-memory with cascaded spintronic devices for AI edge
    Bian, Zhongjian
    Liu, Bo
    Cai, Hao
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2023, 109
  • [2] Cai H., 2023, IEEE INT SOLID STATE, P500
  • [3] Proposal of Analog In-Memory Computing With Magnified Tunnel Magnetoresistance Ratio and Universal STT-MRAM Cell
    Cai, Hao
    Guo, Yanan
    Liu, Bo
    Zhou, Mingyang
    Chen, Juntong
    Liu, Xinning
    Yang, Jun
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (04) : 1519 - 1531
  • [4] Chiu Yen-Cheng, 2022, 2022 IEEE International Solid- State Circuits Conference (ISSCC), P178, DOI 10.1109/ISSCC42614.2022.9731621
  • [5] A 10-Bit 80-MS/s Decision-Select Successive Approximation TDC in 65-nm CMOS
    Chung, Hayun
    Ishikuro, Hiroki
    Kuroda, Tadahiro
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (05) : 1232 - 1241
  • [6] Deaville Peter, 2022, 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), P268, DOI 10.1109/VLSITechnologyandCir46769.2022.9830153
  • [7] A Computing-in-memory Scheme with Series Bit-cell in STT-MRAM for Efficient Multi-bit Analog Multiplication
    Hao, Zuolei
    Zhang, Yue
    Wang, Jinkai
    Wang, Hongyu
    Bai, Yining
    Wang, Guanda
    Zhao, Weisheng
    [J]. 2021 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), 2021,
  • [8] A 332 TOPS/W Input/Weight-Parallel Computingin-Memory Processor with Voltage-Capacitance-Ratio Cell and Time-Based ADC
    Hong, Seongyon
    Um, Soyeon
    Kim, Sangjin
    Kim, Sangyeob
    Jo, Wooyoung
    Yoo, Hoi-Jun
    [J]. 2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [9] 8-b Precision 8-Mb ReRAM Compute-in-Memory Macro Using Direct-Current-Free Time-Domain Readout Scheme for AI Edge Devices
    Hung, Je-Min
    Wen, Tai-Hao
    Huang, Yen-Hsiang
    Huang, Sheng-Po
    Chang, Fu-Chun
    Su, Chin-, I
    Khwa, Win-San
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Chih, Yu-Der
    Chang, Tsung-Yung Jonathan
    Chang, Meng-Fan
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, : 303 - 315
  • [10] Challenges and Trends of Nonvolatile In-Memory-Computation Circuits for AI Edge Devices
    Hung, Je-Min
    Jhang, Chuan-Jia
    Wu, Ping-Chun
    Chiu, Yen-Cheng
    Chang, Meng-Fan
    [J]. IEEE Open Journal of the Solid-State Circuits Society, 2021, 1 : 171 - 183