Inverse design of ZIFs through artificial intelligence methods

被引:0
|
作者
Krokidas, Panagiotis [1 ]
Kainourgiakis, Michael [2 ]
Steriotis, Theodore [3 ]
Giannakopoulos, George [1 ]
机构
[1] Natl Ctr Sci Res Demokritos, Inst Informat & Telecommun, Attikis 15341, Greece
[2] NCSR Demokritos, Inst Nucl & Radiol Sci & Technol Energy & Safety, Attikis 15341, Greece
[3] Natl Ctr Sci Res Demokritos, Inst Nanosci & Nanotechnol, Attikis 15341, Greece
关键词
MEMBRANES; FRAMEWORK; ALGORITHM;
D O I
10.1039/d4cp02488e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a tool combining a biologically inspired evolutionary algorithm with machine learning to design fine-tuned zeolitic-imidazolate frameworks (ZIFs), a sub-family of MOFs, for desired sets of diffusivities of species i (Di) and Di/Dj of any given mixture of species i and j. We display the efficacy and validitiy of our tool, by designing ZIFs that meet industrial performance criteria of permeability and selectivity, for CO2/CH4, O2/N2 and C3H6/C3H8 mixtures. We demonstrate an efficient inverse design scheme combining machine learning and genetic algorithms to design ZIFs with user-defined performance by assembling frameworks from building units, including metals, linkers, and functional groups.
引用
收藏
页码:25314 / 25318
页数:5
相关论文
共 50 条
  • [21] AN ARTIFICIAL INTELLIGENCE BASED METHOD FOR PERFORMANCE PREDICTION AND INVERSE DESIGN OF HYDRAULIC TURBOCHARGERS
    Thatte, Azam
    Vurimi, Ganesh
    Borate, Prabhav
    Javaherchi, Teymour
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 8, 2020,
  • [22] Design of Antennas through Artificial Intelligence: State of the Art and Challenges
    Goudos, Sotirios K. K.
    Diamantoulakis, Panagiotis D. D.
    Matin, Mohammad A. A.
    Sarigiannidis, Panagiotis
    Wan, Shaohua
    Karagiannidis, George K. K.
    IEEE COMMUNICATIONS MAGAZINE, 2022, 60 (12) : 96 - 102
  • [23] Inverse deep learning methods and benchmarks for artificial electromagnetic material design
    Ren, Simiao
    Mahendra, Ashwin
    Khatib, Omar
    Deng, Yang
    Padilla, Willie J.
    Malof, Jordan M.
    NANOSCALE, 2022, 14 (10) : 3958 - 3969
  • [24] Statistical software pricing analysis through artificial intelligence and statistical methods
    Aggarwal A.K.
    Dave D.S.
    International Journal of Information Technology and Management, 2010, 9 (02) : 132 - 141
  • [25] Reply: 'The importance of study design in the application of artificial intelligence methods in medicine'
    Nagpal, Kunal
    Liu, Yun
    Chen, Po-Hsuan Cameron
    Stumpe, Martin C.
    Mermel, Craig H.
    NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [26] Modeling and Design of Tests for Discrete Devices Based on Artificial Intelligence Methods
    Lyul'kin, A. E.
    Automatic Control and Computer Sciences (English translation of Avtomatika i Vychislitel'naya Tekhnika), 1995, 29 (06):
  • [27] Reply: ‘The importance of study design in the application of artificial intelligence methods in medicine’
    Kunal Nagpal
    Yun Liu
    Po-Hsuan Cameron Chen
    Martin C. Stumpe
    Craig H. Mermel
    npj Digital Medicine, 2
  • [28] Inventive Principles Extraction in Inventive Design Using Artificial Intelligence Methods
    Hanifi, Masih
    Chibane, Hicham
    Houssin, Remy
    Cavallucci, Denis
    SYSTEMATIC INNOVATION PARTNERSHIPS WITH ARTIFICIAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2022, 655 : 178 - 186
  • [29] Computer design of systems for automated electric drive by methods of artificial intelligence
    Papavasileiou, A
    Georgios, S
    Savvidis, S
    Gegov, E
    2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2004, : 557 - 559
  • [30] The transformational dive of nanophotonics inverse design from deep learning to artificial general intelligence
    Wang, Qizhou
    Zhang, Yushu
    Burguete-Lopez, Arturo
    Rodionov, Sergei
    Fratalocchi, Andrea
    APL PHOTONICS, 2024, 9 (10)