Hierarchical mixture of discriminative Generalized Dirichlet classifiers

被引:1
作者
Togban, Elvis [1 ]
Ziou, Djemel [1 ]
机构
[1] Univ Sherbrooke, Fac Sci, Dept Informat, 2500 Bl Univ, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Compositional data; Generalized Dirichlet; Hierarchical mixture of experts; Variational approximation; Upper-bound of generalized Dirichlet mixture; CLASSIFICATION; LEARNERS; MODELS;
D O I
10.1016/j.patcog.2024.110789
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a discriminative classifier for compositional data. This classifier is based on the posterior distribution of the Generalized Dirichlet which is the discriminative counterpart of Generalized Dirichlet mixture model. Moreover, following the mixture of experts paradigm, we proposed a hierarchical mixture of this classifier. In order to learn the models parameters, we use a variational approximation by deriving an upper-bound for the Generalized Dirichlet mixture. To the best of our knownledge, this is the first time this bound is proposed in the literature. Experimental results are presented for spam detection and color space identification.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Intrusion Detection System Based on Hybrid Hierarchical Classifiers [J].
Mohd, Noor ;
Singh, Annapurna ;
Bhadauria, H. S. .
WIRELESS PERSONAL COMMUNICATIONS, 2021, 121 (01) :659-686
[42]   Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers [J].
Greiner, K ;
Zhou, W .
EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, :167-173
[43]   Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers [J].
Russell Greiner ;
Xiaoyuan Su ;
Bin Shen ;
Wei Zhou .
Machine Learning, 2005, 59 :297-322
[44]   Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers [J].
Greiner, R ;
Su, XY ;
Shen, B ;
Zhou, W .
MACHINE LEARNING, 2005, 59 (03) :297-322
[45]   Hierarchical Independence Thresholding for learning Bayesian network classifiers [J].
Liu, Yang ;
Wang, Limin ;
Mammadov, Musa ;
Chen, Shenglei ;
Wang, Gaojie ;
Qi, Sikai ;
Sun, Minghui .
KNOWLEDGE-BASED SYSTEMS, 2021, 212
[46]   Hierarchical Combining of Classifiers in Privacy Preserving Data Mining [J].
Andruszkiewicz, Piotr .
HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, HAIS 2014, 2014, 8480 :573-584
[47]   Dirichlet compound negative multinomial mixture models and applications [J].
Bregu, Ornela ;
Bouguila, Nizar .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024,
[48]   Finite Inverted Dirichlet Mixture Optimal Pixel Predictor [J].
Graja, Omar ;
Bouguila, Nizar .
2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
[49]   A Probability for Classification Based on the Dirichlet Process Mixture Model [J].
Ruth Fuentes–García ;
Ramsés H. Mena ;
Stephen G. Walker .
Journal of Classification, 2010, 27 :389-403
[50]   Clustering with label constrained Dirichlet process mixture model [J].
Burhanuddin, Nurul Afiqah ;
Adam, Mohd Bakri ;
Ibrahim, Kamarulzaman .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 107