Hierarchical mixture of discriminative Generalized Dirichlet classifiers

被引:1
作者
Togban, Elvis [1 ]
Ziou, Djemel [1 ]
机构
[1] Univ Sherbrooke, Fac Sci, Dept Informat, 2500 Bl Univ, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Compositional data; Generalized Dirichlet; Hierarchical mixture of experts; Variational approximation; Upper-bound of generalized Dirichlet mixture; CLASSIFICATION; LEARNERS; MODELS;
D O I
10.1016/j.patcog.2024.110789
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a discriminative classifier for compositional data. This classifier is based on the posterior distribution of the Generalized Dirichlet which is the discriminative counterpart of Generalized Dirichlet mixture model. Moreover, following the mixture of experts paradigm, we proposed a hierarchical mixture of this classifier. In order to learn the models parameters, we use a variational approximation by deriving an upper-bound for the Generalized Dirichlet mixture. To the best of our knownledge, this is the first time this bound is proposed in the literature. Experimental results are presented for spam detection and color space identification.
引用
收藏
页数:10
相关论文
共 50 条
[31]   An approach of classifiers fusion based on hierarchical modifications [J].
Song, Lin ;
Sun, Yi-xiao .
APPLIED INTELLIGENCE, 2022, 52 (06) :6464-6476
[32]   Markov Switching Dirichlet Process Mixture Regression [J].
Taddy, Matthew A. ;
Kottas, Athanasios .
BAYESIAN ANALYSIS, 2009, 4 (04) :793-815
[33]   Structural Properties of the Generalized Dirichlet Distributions [J].
Chang, Wan-Ying ;
Gupta, Rameshwar D. ;
Richards, Donald St. P. .
ALGEBRAIC METHODS IN STATISTICS AND PROBABILITY II, 2010, 516 :109-+
[34]   A new constrained maximum margin approach to discriminative learning of Bayesian classifiers [J].
Guo, Ke ;
Liu, Xia-bi ;
Guo, Lun-hao ;
Li, Zong-jie ;
Geng, Zeng-min .
FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2018, 19 (05) :639-650
[35]   Simultaneous Bayesian clustering and feature selection using RJMCMC-based learning of finite generalized Dirichlet mixture models [J].
Elguebaly, Tarek ;
Bouguila, Nizar .
SIGNAL PROCESSING, 2013, 93 (06) :1531-1546
[36]   Generalized and Discriminative Collaborative Representation for Multiclass Classification [J].
Wang, Yulong ;
Tan, Yap-Peng ;
Tang, Yuan Yan ;
Chen, Hong ;
Zou, Cuiming ;
Li, Luoqing .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) :2675-2686
[37]   A Generalized Discriminative Least Squares Regression Model [J].
Yuan, Haoliang ;
Zheng, Junjie ;
Xu, Fangyuan ;
Lai, Loi Lei ;
Li, Weiyang ;
Zheng, Houqing ;
Wang, Zhimin .
PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, :376-381
[38]   Hierarchical distance learning by stacking nearest neighbor classifiers [J].
Ozay, Mete ;
Yarman-Vural, Fatos Tunay .
INFORMATION FUSION, 2016, 29 :14-31
[39]   Structure adaptation of hierarchical knowledge-based classifiers [J].
Rattasiri, Waratt ;
Halgamuge, Saman K. ;
Wickramarachchi, Nalin .
NEURAL COMPUTING & APPLICATIONS, 2009, 18 (06) :523-537
[40]   Cost-sensitive methods of constructing hierarchical classifiers [J].
Penar, Wojciech ;
Wozniak, Michal .
EXPERT SYSTEMS, 2010, 27 (03) :146-155