A quantitative version of the Gidas-Ni-Nirenberg Theorem

被引:4
作者
Ciraolo, Giulio [1 ]
Cozzi, Matteo [1 ]
Perugini, Matteo [1 ]
Pollastro, Luigi [1 ,2 ]
机构
[1] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[2] Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Gidas-Ni-Nirenberg Theorem; Semilinear problem; Approximate symmetry; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; MOVING PLANES; SYMMETRY; MONOTONICITY; STABILITY;
D O I
10.1016/j.jfa.2024.110585
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A celebrated result by Gidas, Ni & Nirenberg asserts that classical positive solutions to semilinear equations -Delta u = f (u) in a ball vanishing at the boundary must be radial and radially decreasing. In this paper we consider small perturbations of this equation and study the quantitative stability counterpart of this result. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:29
相关论文
共 26 条
[1]  
Aftalion A., 1999, Adv. Differential Equations, V4, P907
[2]  
Alexandrov A.D., 1958, Vestnik Leningrad Univ. Ser. Mat. Meh. Astr, V13, P5, DOI [10.1090/trans2/021, DOI 10.1090/TRANS2/021]
[3]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[4]  
Berestycki H., 1991, B SOC BRASIL MAT NS, V22, P1, DOI [10.1007/BF01244896, DOI 10.1007/BF01244896]
[5]  
Brock Friedemann., 1998, Progress in partial differential equations, V1, P46
[7]   SYMMETRY AND QUANTITATIVE STABILITY FOR THE PARALLEL SURFACE FRACTIONAL TORSION PROBLEM [J].
Ciraolo, Giulio ;
Dipierro, Serena ;
Poggesi, Giorgio ;
Pollastro, Luigi ;
Valdinoci, Enrico .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (05) :3515-3540
[8]  
Ciraolo G, 2018, BRUNO PINI MATH ANAL, V9, P41
[9]   A sharp quantitative version of Alexandrov's theorem via the method of moving planes [J].
Ciraolo, Giulio ;
Vezzoni, Luigi .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (02) :261-299
[10]   Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature [J].
Ciraolo, Giulio ;
Figalli, Alessio ;
Maggi, Francesco ;
Novaga, Matteo .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 741 :275-294