A dual-branch infrared and visible image fusion network using progressive image-wise feature transfer

被引:0
作者
Xu, Shaoping [1 ]
Zhou, Changfei [1 ]
Xiao, Jian [1 ]
Tao, Wuyong [1 ]
Dai, Tianyu [1 ]
机构
[1] Nanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Infrared and visible image fusion; Dual-branch fusion network; Progressive image-wise feature transfer; Transformer module; CLIP loss; NEST;
D O I
10.1016/j.jvcir.2024.104190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To achieve a fused image that contains rich texture details and prominent targets, we present a progressive dual-branch infrared and visible image fusion network called PDFusion, which incorporates the Transformer module. Initially, the proposed network is divided into two branches to extract infrared and visible features independently. Subsequently, the image-wise transfer block (ITB) is introduced to fuse the infrared and visible features at different layers, facilitating the exchange of information between features. The fused features are then fed back into both pathways to contribute to the subsequent feature extraction process. Moreover, in addition to conventional pixel-level and structured loss functions, the contrastive language- image pretraining (CLIP) loss is introduced to guide the network training. Experimental results on publicly available datasets demonstrate the promising performance of PDFusion in the task of infrared and visible image fusion. The exceptional fusion performance of the proposed fusion network can be attributed to the following reasons: (1) The ITB block, particularly with the integration of the Transformer, enhances the capability of representation learning. The Transformer module captures long-range dependencies among image features, enabling a global receptive field that integrates contextual information from the entire image. This leads to a more comprehensive fusion of features. (2) The feature loss based on the CLIP image encoder minimizes the discrepancy between the generated and target images. Consequently, it promotes the generation of semantically coherent and visually appealing fused images. The source code of our method can be found at https://github.com/Changfei-Zhou/PDFusion.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] PTET: A progressive token exchanging transformer for infrared and visible image fusion
    Huang, Jun
    Chen, Ziang
    Ma, Yong
    Fan, Fan
    Tang, Linfeng
    Xiang, Xinyu
    IMAGE AND VISION COMPUTING, 2024, 144
  • [32] IMGAN: Infrared and visible image fusion using a novel intensity masking generative adversarial network
    Sun, Xiuyi
    Hu, Shaohai
    Ma, Xiaole
    Hu, Qiu
    Xu, Shuwen
    INFRARED PHYSICS & TECHNOLOGY, 2022, 125
  • [33] Infrared and Visible Image Fusion with a Generative Adversarial Network and a Residual Network
    Xu, Dongdong
    Wang, Yongcheng
    Xu, Shuyan
    Zhu, Kaiguang
    Zhang, Ning
    Zhang, Xin
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [34] Multiscale feature learning and attention mechanism for infrared and visible image fusion
    Gao, Li
    Luo, Delin
    Wang, Song
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (02) : 408 - 422
  • [35] HFHFusion: A Heterogeneous Feature Highlighted method for infrared and visible image fusion
    Zheng, Yulong
    Zhao, Yan
    Chen, Jian
    Chen, Mo
    Yu, Jiaqi
    Wei, Jian
    Wang, Shigang
    OPTICS COMMUNICATIONS, 2024, 571
  • [36] Infrared and visible image fusion based on global context network
    Li, Yonghong
    Shi, Yu
    Pu, Xingcheng
    Zhang, Suqiang
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (05)
  • [37] Self-supervised feature adaption for infrared and visible image fusion
    Zhao, Fan
    Zhao, Wenda
    Yao, Libo
    Liu, Yu
    INFORMATION FUSION, 2021, 76 : 189 - 203
  • [38] Infrared and Visible Image Fusion Based on Innovation Feature Simultaneous Decomposition
    He, Guiqing
    Dong, Dandan
    Xing, Siyuan
    Zhao, Ximei
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1174 - 1177
  • [39] Visible and Infrared Image Fusion Using Deep Learning
    Zhang, Xingchen
    Demiris, Yiannis
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 10535 - 10554
  • [40] IDFusion: An Infrared and Visible Image Fusion Network for Illuminating Darkness
    Lv, Guohua
    Wang, Xiyan
    Wei, Zhonghe
    Cheng, Jinyong
    Ma, Guangxiao
    Bao, Hanju
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 3140 - 3145