Development and Techno-Economic Analysis of a Tracked Indirect Forced Solar Dryer Integrated Photovoltaic System for Drying Tomatoes

被引:4
|
作者
Elwakeel, Abdallah Elshawadfy [1 ]
Gameh, Mohsen A. [2 ]
Oraiath, Awad Ali Tayoush [3 ]
Eissa, Ahmed S. [4 ]
Elsayed, Salah [5 ,6 ]
Elmessery, Wael M. [7 ,8 ]
Mostafa, Mostafa B. [1 ]
Alhag, Sadeq K. [9 ]
Al-Shuraym, Laila A. [10 ]
Moustapha, Moustapha Eid [11 ]
Elbeltagi, Ahmed [12 ]
Salem, Ali [13 ,14 ]
Tantawy, Aml Abubakr [15 ]
机构
[1] Aswan Univ, Fac Agr & Nat Resources, Agr Engn Dept, Aswan 81528, Egypt
[2] Assiut Univ, Fac Agr, Soils & Water Dept, Assiut 71526, Egypt
[3] Omar Al Mukhtar Univ, Fac Agr, Dept Agr Engn, Al Bayda, Libya
[4] Al Azhar Univ, Fac Agr Engn, Agr Prod Proc Engn Dept, Cairo 11751, Egypt
[5] Univ Sadat City, Environm Studies & Res Inst, Agr Engn Evaluat Nat Resources Dept, Menoufia 32897, Egypt
[6] Al Ayen Univ, Sci Res Ctr, New Era & Dev Civil Engn Res Grp, Nasiriyah 64001, Iraq
[7] Kafrelsheikh Univ, Fac Agr, Agr Engn Dept, Kafrelsheikh 33516, Egypt
[8] Ctr Invest Biol Noroeste, Engn Grp, La Paz 23201, Mexico
[9] King Khalid Univ, Coll Sci & Arts, Biol Dept, Muhayl Asser 61913, Saudi Arabia
[10] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Biol Dept, Riyadh 11564, Saudi Arabia
[11] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities, Dept Chem, Al Kharj 11942, Saudi Arabia
[12] Mansoura Univ, Fac Agr, Agr Engn Dept, Mansoura 35516, Egypt
[13] Minia Univ, Fac Engn, Civil Engn Dept, Al Minya 61519, Egypt
[14] Univ Pecs, Fac Engn & Informat Technol, Struct Diagnost & Anal Res Grp, H-7622 Pecs, Hungary
[15] Aswan Univ, Fac Agr & Nat Resources, Food Sci & Technol Dept, Aswan 81528, Egypt
关键词
automatic systems; internet of things; photovoltaic cell; solar drying; solar tracking systems; tomato; TUNNEL DRYER; HEAT-PIPE; PERFORMANCE; COLLECTOR; SLICES; EFFICIENCY; QUALITY; TUBE;
D O I
10.3390/su16167008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fresh tomato fruits (TFs) contain a high moisture content of 90-94%, which makes storage and transportation over long distances difficult. Lately, numerous investigators have employed diverse solar dryers (SDs) in conjunction with stationary solar collectors (SCs) to dry tomatoes; however, the effectiveness of this technique is limited due to the sun's constant motion throughout the day. Consequently, the current study set out to create an SD that is outfitted with an autonomous sun tracking system and an internet of things (IoT)-based photovoltaic system connected to an SC to continually track the sun and increase the quantity of energy absorbed. Furthermore, we investigated some operating parameters that impact the SD's performance, taking into account three tomato slice thicknesses (STs) (4.0, 6.0, and 8.0 mm) and three air velocities (1.0, 1.5, and 2.0 m/s). The obtained data demonstrated a notable rise in the efficiency of the SD integrated with the automatic SC tracker throughout the course of the day when compared to the fixed SC, where the latter's efficiency improved by 21.6%, indicating a strong degree of agreement. The results demonstrated a notable 20-25% reduction in drying time and a 4.9 degrees C increase in air temperature within the SC integrated with an automatic solar collector tracker (ASCT) at 2:00 p.m., as compared to the SC integrated with a fixed SC. The results of this study also demonstrated that there were no appreciable variations in the air speeds used to dry the tomatoes; however, the thickness of the tomato slices (TSs) had a significant impact; using 4 mm thick tomato slices resulted in a 50% reduction in drying time. Furthermore, the highest efficiency of the PV system was discovered to be 17.45%. Although the two solar dryers have very similar payback times, there are more dried tomatoes available in the markets.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Experimental and techno-economic analysis of solar-assisted heat pump drying of biomass
    Thomasson, Tomi
    Raitila, Jyrki
    Tsupari, Eemeli
    ENERGY REPORTS, 2024, 11 : 316 - 326
  • [22] Floating solar power plant for sustainable development: A techno-economic analysis
    Goswami, Anik
    Sadhu, Paromita
    Goswami, Utpal
    Sadhu, Pradip Kumar
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2019, 38 (06)
  • [23] Techno-Economic Feasibility Analysis of 100 MW Solar Photovoltaic Power Plant in Pakistan
    Abas, Naeem
    Rauf, Shoaib
    Saleem, Muhammad Shoaib
    Irfan, Muhammad
    Hameed, Suleman Abdul
    TECHNOLOGY AND ECONOMICS OF SMART GRIDS AND SUSTAINABLE ENERGY, 2022, 7 (01):
  • [24] Techno-Economic and Environmental Analysis of a Grid-Connected Photovoltaic Energy System
    Memar, Mohammad-Reza
    Moazzami, Majid
    Shahinzadeh, Hossein
    Fadaei, Davoud
    2017 CONFERENCE ON ELECTRICAL POWER DISTRIBUTION NETWORKS CONFERENCE (EPDC), 2017, : 124 - 130
  • [25] Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices
    Vijayan, S.
    Arjunan, T. V.
    Kumar, Anil
    RENEWABLE ENERGY, 2020, 146 : 2210 - 2223
  • [26] A techno-economic analysis for an integrated solar PV/T system with thermal and electrical storage - case study
    Athukorala, A. U. C. D.
    Jayasuriya, W. J. A.
    Ragulageethan, S.
    Sirimanna, M. P. G.
    Attalage, R. A.
    Perera, A. T. D.
    2015 MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON), 2015, : 182 - 187
  • [27] Thermodynamic and techno-economic analysis of a direct thermal oil vaporization solar power system
    Li, Pengcheng
    Ye, Jing
    Li, Jing
    Wang, Yandong
    Jiang, Xiaobin
    Qian, Tongle
    Pei, Gang
    Liu, Xunfen
    ENERGY, 2023, 282
  • [28] Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis
    Shayan, Mostafa Esmaeili
    Najafi, Gholamhassan
    Ghobadian, Barat
    Gorjian, Shiva
    Mazlan, Mohamed
    Samami, Mehdi
    Shabanzadeh, Alireza
    SUSTAINABILITY, 2022, 14 (06)
  • [29] Techno-economic analysis of a modified concentrating photovoltaic/organic Rankine cycle system
    Moltames, Rahim
    Roshandel, Ramin
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2020, : 2026 - 2038
  • [30] Exergy, drying kinetics, and performance assessment of Solanum lycopersicum (tomatoes) drying in an indirect type domestic hybrid solar dryer (ITDHSD) system
    Sharma, Mukul
    Atheaya, Deepali
    Kumar, Anil
    JOURNAL OF FOOD PROCESSING AND PRESERVATION, 2022, 46 (11)