Data-Driven Stroke Classification Utilizing Electromyographic Muscle Features and Machine Learning Techniques

被引:1
作者
Lee, Jaehyuk [1 ]
Kim, Youngjun [2 ]
Kim, Eunchan [3 ]
机构
[1] Kongju Natl Univ, Smart Technol Lab, Cheonan Si 31080, South Korea
[2] Kyungnam Univ, Sch Comp Sci & Engn, Changwon Si 51767, South Korea
[3] Hanyang Univ, Dept Informat Syst, Seoul 04763, South Korea
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 18期
关键词
electromyography; machine learning; stroke; TRANSIENT ISCHEMIC ATTACK; QUADRICEPS MUSCLE; GAIT; ALGORITHMS; BALANCE;
D O I
10.3390/app14188430
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Background: Predicting a stroke in advance or through early detection of subtle prodromal symptoms is crucial for determining the prognosis of the remaining life. Electromyography (EMG) has the advantage of easy and quick collection of biological data in clinical settings; however, its application in data processing and utilization is somewhat limited. Thus, this study aims to verify how simple signal processing and feature extraction utilize EMG in machine learning (ML)-based prediction models. Methods: EMG data were collected from the legs of 120 healthy individuals and 120 stroke patients during gait. Four statistical features were extracted from 16 EMG signals and trained on seven ML-based models. The accuracy of the validation and test datasets was also examined. Results: The model with the best performance was Random Forest. Among the 16 EMG signals, the average and maximum values of the muscle activities involved in knee extension (i.e., vastus medialis and rectus femoris) contributed significantly to the predictions. Conclusion: The results of this study confirmed that the simple processing and feature extraction of EMG signals effectively contributed to the accuracy of ML-based models. Routine use of EMG data collected in clinical environments is expected to provide benefits in terms of stroke prevention and rehabilitation.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Efficient Data-Driven Machine Learning Models for Cardiovascular Diseases Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2023, 23 (03)
  • [42] Review on Machine Learning Techniques for Medical Data Classification and Disease Diagnosis
    Saturi, Swapna
    REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE, 2023, 9 (02) : 141 - 164
  • [43] Sentiment Classification Using Machine Learning Techniques with Syntax Features
    Zou, Huang
    Tang, Xinhuai
    Xie, Bin
    Liu, Bing
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2015, : 175 - 179
  • [44] Invoice Classification Using Deep Features and Machine Learning Techniques
    Tarawneh, Ahmad S.
    Hassanat, Ahmad B.
    Chetverikov, Dmitry
    Lendak, Imre
    Verma, Chaman
    2019 IEEE JORDAN INTERNATIONAL JOINT CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY (JEEIT), 2019, : 855 - 859
  • [45] A DATA-DRIVEN WORKFLOW FOR PREDICTION OF FRACTURING PARAMETERS WITH MACHINE LEARNING
    Zhu, Zhihua
    Hsu, Maoya
    Kun, Ding
    Wang, Tianyu
    He, Xiaodong
    Tian, Shouceng
    THERMAL SCIENCE, 2024, 28 (2A): : 1085 - 1090
  • [46] Prediction of casing damage: A data-driven, machine learning approach
    Zhao Y.
    Jiang H.
    Li H.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 1047 - 1053
  • [47] Clustering suicides: A data-driven, exploratory machine learning approach
    Ludwig, Birgit
    Koenig, Daniel
    Kapusta, Nestor D.
    Blueml, Victor
    Dorffner, Georg
    Vyssoki, Benjamin
    EUROPEAN PSYCHIATRY, 2019, 62 : 15 - 19
  • [48] Data-Driven Machine Learning in Environmental Pollution: Gains and Problems
    Liu, Xian
    Lu, Dawei
    Zhang, Aiqian
    Liu, Qian
    Jiang, Guibin
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (04) : 2124 - 2133
  • [49] Data-driven modeling of technology acceptance: A machine learning perspective
    Alwabel, Asim Suleman A.
    Zeng, Xiao-Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [50] Data-driven polynomial chaos expansion for machine learning regression
    Torre, Emiliano
    Marelli, Stefano
    Embrechts, Paul
    Sudret, Bruno
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 388 : 601 - 623