Data-Driven Stroke Classification Utilizing Electromyographic Muscle Features and Machine Learning Techniques

被引:1
作者
Lee, Jaehyuk [1 ]
Kim, Youngjun [2 ]
Kim, Eunchan [3 ]
机构
[1] Kongju Natl Univ, Smart Technol Lab, Cheonan Si 31080, South Korea
[2] Kyungnam Univ, Sch Comp Sci & Engn, Changwon Si 51767, South Korea
[3] Hanyang Univ, Dept Informat Syst, Seoul 04763, South Korea
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 18期
关键词
electromyography; machine learning; stroke; TRANSIENT ISCHEMIC ATTACK; QUADRICEPS MUSCLE; GAIT; ALGORITHMS; BALANCE;
D O I
10.3390/app14188430
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Background: Predicting a stroke in advance or through early detection of subtle prodromal symptoms is crucial for determining the prognosis of the remaining life. Electromyography (EMG) has the advantage of easy and quick collection of biological data in clinical settings; however, its application in data processing and utilization is somewhat limited. Thus, this study aims to verify how simple signal processing and feature extraction utilize EMG in machine learning (ML)-based prediction models. Methods: EMG data were collected from the legs of 120 healthy individuals and 120 stroke patients during gait. Four statistical features were extracted from 16 EMG signals and trained on seven ML-based models. The accuracy of the validation and test datasets was also examined. Results: The model with the best performance was Random Forest. Among the 16 EMG signals, the average and maximum values of the muscle activities involved in knee extension (i.e., vastus medialis and rectus femoris) contributed significantly to the predictions. Conclusion: The results of this study confirmed that the simple processing and feature extraction of EMG signals effectively contributed to the accuracy of ML-based models. Routine use of EMG data collected in clinical environments is expected to provide benefits in terms of stroke prevention and rehabilitation.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Constructing Dependable Data-Driven Software With Machine Learning
    Pahl, Claus
    Azimi, Shelernaz
    IEEE SOFTWARE, 2021, 38 (06) : 88 - 97
  • [32] A data-driven approach for the prediction of coal seam gas content using machine learning techniques
    Akdas, Satuk Bugra
    Fisne, Abdullah
    APPLIED ENERGY, 2023, 347
  • [33] Machine Learning and Data-Driven Techniques for the Control of SmartPower Generation Systems: An Uncertainty Handling Perspective
    Sun, Li
    You, Fengqi
    ENGINEERING, 2021, 7 (09) : 1239 - 1247
  • [34] Flexible Architecture for Data-Driven Predictive Maintenance with Support for Offline and Online Machine Learning Techniques
    Canito, Alda
    Fernandes, Marta
    Mourinho, Joao
    Tosun, Serkan
    Kaya, Kamer
    Turupcu, Aysegul
    Lagares, Angel
    Karabulut, Huseyin
    Marreiros, Goreti
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [35] A novel data-driven robust framework based on machine learning and knowledge graph for disease classification
    Lei, Zhenfeng
    Sun, Yuan
    Nanehkaran, Y. A.
    Yang, Shuangyuan
    Islam, Md Saiful
    Lei, Huiqing
    Zhang, Defu
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 (102): : 534 - 548
  • [36] Data-driven short-term natural gas demand forecasting with machine learning techniques
    Sharma, Vinayak
    Cali, Umit
    Sardana, Bhav
    Kuzlu, Murat
    Banga, Dishant
    Pipattanasomporn, Manisa
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 206
  • [37] Towards Data-Driven Network Intrusion Detection Systems: Features Dimensionality Reduction and Machine Learning
    Maabreh M.
    Obeidat I.
    Elsoud E.A.
    Alnajjai A.
    Alzyoud R.
    Darwish O.
    International Journal of Interactive Mobile Technologies, 2022, 16 (14) : 123 - 135
  • [38] Meteorological Data Based Detection of Stroke Using Machine Learning Techniques
    Marc, Anastasia-Daria
    Ploscar, Andreea Alina
    Coroiu, Adriana Mihaela
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT VIII, 2024, 15023 : 103 - 115
  • [39] Data-driven science and machine learning methods in laser-plasma physics
    Doepp, Andreas
    Eberle, Christoph
    Howard, Sunny
    Irshad, Faran
    Lin, Jinpu
    Streeter, Matthew
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2023, 11
  • [40] Data-Driven Load Forecasting Using Machine Learning and Meteorological Data
    Alrashidi A.
    Qamar A.M.
    Computer Systems Science and Engineering, 2023, 44 (03): : 1973 - 1988