Core collapse in cylindrical Li-ion batteries

被引:0
|
作者
Gelam, Sai Dinesh [1 ]
Maddipatla, Sahithi [1 ]
Chicone, Carmen [2 ]
Pecht, Michael [1 ]
机构
[1] Univ Maryland, Ctr Adv Life Cycle Engn CALCE, College Pk, MD 20742 USA
[2] Univ Missouri, Dept Math, Columbia, MO USA
关键词
Lithium-ion battery; Electrode deformation; Core collapse; Anode bending; Euler buckling; LITHIUM; ELECTRODES;
D O I
10.1016/j.jpowsour.2024.235471
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cylindrical lithium-ion batteries are manufactured with a jelly roll structure of tightly wound electrode layers separated by separators. Core collapse occurs when multiple layers adjacent to the core of the jelly roll deform inward. This paper reviews the experimental and stress modeling analysis studies of core collapse initiation and evolution with charge-discharge cycles. Areas of agreement and conflicting opinions on the causes of core collapse are discussed. Euler and hoop buckling analysis are conducted for baseline comparison with reported causes of core collapse and mathematical modeling in the literature. Recommendations for future studies are suggested for determining the dominant factors affecting core collapse, conducting experiments to assess core collapse degradation paths, and providing suggestions for modeling.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Silicon as anode material for Li-ion batteries
    Ozanam, Francois
    Rosso, Michel
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 : 2 - 11
  • [32] Corrosive fracture of electrodes in Li-ion batteries
    Xu, Rong
    Zhao, Kejie
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2018, 121 : 258 - 280
  • [33] Modeling fractal electrodes for Li-ion batteries
    Teixidor, G. Turon
    Park, B. Y.
    Mukherjee, P. P.
    Kang, Q.
    Madou, M. J.
    ELECTROCHIMICA ACTA, 2009, 54 (24) : 5928 - 5936
  • [34] UNDERSTANDING AND PREDICTING THE RISKS IN Li-Ion BATTERIES
    Kong, Lingxi
    Pecht, Michael G.
    7TH INTERNATIONAL CONFERENCE INTEGRITY-RELIABILITY-FAILURE (IRF2020), 2020, : 587 - 588
  • [35] Composite anode materials for Li-ion batteries
    Wen, Zhaoyin
    Yang, Xuefin
    Huang, Shahua
    JOURNAL OF POWER SOURCES, 2007, 174 (02) : 1041 - 1045
  • [36] Quantification of Heterogeneous Degradation in Li-Ion Batteries
    Yang, Yang
    Xu, Rong
    Zhang, Kai
    Lee, Sang-Jun
    Mu, Linqin
    Liu, Pengfei
    Waters, Crystal K.
    Spence, Stephanie
    Xu, Zhengrui
    Wei, Chenxi
    Kautz, David J.
    Yuan, Qingxi
    Dong, Yuhui
    Yu, Young-Sang
    Xiao, Xianghui
    Lee, Han-Koo
    Pianetta, Piero
    Cloetens, Peter
    Lee, Jun-Sik
    Zhao, Kejie
    Lin, Feng
    Liu, Yijin
    ADVANCED ENERGY MATERIALS, 2019, 9 (25)
  • [37] Metal oxide anodes for Li-ion batteries
    T. Brousse
    D. Defives
    L. Pasquereau
    S. M. Lee
    U. Herterich
    D. M. Schleich
    Ionics, 1997, 3 : 332 - 337
  • [38] Reduction of graphene oxide in Li-ion batteries
    Zhao, Chunsong
    Gao, Hongpeng
    Chen, Chengmeng
    Wu, Hui
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (36) : 18360 - 18364
  • [39] Predicting and Extending the Lifetime of Li-Ion Batteries
    Burns, J. C.
    Kassam, Adil
    Sinha, N. N.
    Downie, L. E.
    Solnickova, Lucie
    Way, B. M.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) : A1451 - A1456
  • [40] Hyperbranched Polyphenylene as an Electrode for Li-Ion Batteries
    Lobo, Laurel Simon
    Matsumoto, Kazuya
    Jikei, Mitsutoshi
    Ikeda, Shun
    Okawa, Hirokazu
    ENERGY TECHNOLOGY, 2021, 9 (10)