YOLOv8s-NE: Enhancing Object Detection of Small Objects in Nursery Environments Based on Improved YOLOv8

被引:1
作者
Bin Amir, Supri [1 ,2 ]
Horio, Keiichi [1 ]
机构
[1] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, 2-4 Hibikino,Wakamatsu Ku, Fukuoka 8080196, Japan
[2] Hasanuddin Univ, Dept Informat Syst, Makassar 90245, South Sulawesi, Indonesia
关键词
small object detection; multiple detection head; DCNv2; attention mechanism; nursery;
D O I
10.3390/electronics13163293
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The primary objective of this research investigation is to examine object detection within the specific environment of a nursery. The nursery environment presents a complex scene with a multitude of objects, varying in size and background. To simulate real-world conditions, we gathered data from a nursery. Our study is centered around the detection of small objects, particularly in nursery settings where objects that include stationery, toys, and small accessories are commonly present. These objects are of significant importance in facilitating cognition of the activities and interactions taking place within the confines of the room. Due to their small size and the possibility of occlusion by other objects or children, precisely detecting these objects is regrettably fraught with inherent challenges. This study introduces YOLOv8s-NE in an effort to enhance the detection of small objects found in the nursery. We improve the standard YOLOv8 by incorporating an extra detection head to effectively for small objects. We replace the C2f module with C2f_DCN to further improve the model's ability to detect objects of varying sizes that can be deformed or occluded within the image. Furthermore, we introduce NAM attention to focus on the important features and ignore less informative ones, thereby improving the accuracy of our proposed model. We used the five-fold cross-validation approach to split the dataset in order to evaluate the performance of YOLOv8s-NE, thereby facilitating a more comprehensive model evaluation. Our model achieves 34.1% of APs, 45.1% of mAP50:90, and 76.7% of mAP50 detection accuracy at 37.55 FPS on the nursery dataset. In terms of APs, mAP50:90, and mAP50 metrics, our proposed YOLOv8s-NE model outperforms the standard YOLOv8s model, with improvements of 4.6%, 4.7%, and 3.9%, respectively. We apply our proposed YOLOv8s-NE model as a safety system by developing an algorithm to detect objects on top of cabinets that could be potentially risky to children.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Improved underwater transparent organism detection based on YOLOv8
    Li, Hongtao
    Guo, Fengyue
    Wu, Jihua
    Ren, Peng
    Luo, Cai
    OCEANS 2024 - SINGAPORE, 2024,
  • [22] Leather Defect Detection Based on Improved YOLOv8 Model
    Peng, Zirui
    Zhang, Chen
    Wei, Wei
    APPLIED SCIENCES-BASEL, 2024, 14 (24):
  • [23] Automotive adhesive defect detection based on improved YOLOv8
    Wang, Chunjie
    Sun, Qibo
    Dong, Xiaogang
    Chen, Jia
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2583 - 2595
  • [24] Defect Detection of Photovoltaic Cells Based on Improved YOLOv8
    Zhou Ying
    Yan Yuze
    Chen Haiyong
    Pei Shenghu
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [25] A Road Defect Detection Algorithm Based on Improved YOLOv8
    Niu, Yiqing
    Cao, Jianrong
    Wang, Yuanchang
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT III, 2025, 2183 : 369 - 383
  • [26] YOLOv8-UCB: Visual Detection of Pouch Battery Using Improved YOLOv8
    Hao, Hao
    Yu, Xiang
    IEEE ACCESS, 2024, 12 : 194899 - 194910
  • [27] Object Detection for Remote Sensing Based on the Enhanced YOLOv8 With WBiFPN
    Shen, Lingyun
    Lang, Baihe
    Song, Zhengxun
    IEEE ACCESS, 2024, 12 : 158239 - 158257
  • [28] YOLOv8s-DDA: An Improved Small Traffic Sign Detection Algorithm Based on YOLOv8s
    Niu, Meiqi
    Chen, Yajun
    Li, Jianying
    Qiu, Xiaoyang
    Cai, Wenhao
    ELECTRONICS, 2024, 13 (18)
  • [29] A Method for Plant Disease Enhance Detection Based on Improved YOLOv8
    Han, Ru
    Shu, Lei
    Li, Kailiang
    2024 33RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, ISIE 2024, 2024,
  • [30] Lightweight Insulator and Defect Detection Method Based on Improved YOLOv8
    Liu, Yanxing
    Li, Xudong
    Qiao, Ruyu
    Chen, Yu
    Han, Xueliang
    Paul, Agyemang
    Wu, Zhefu
    APPLIED SCIENCES-BASEL, 2024, 14 (19):