Mechanisms of Rehmannioside A Against Systemic Lupus Erythematosus Based on Network Pharmacology, Molecular Docking and Molecular Dynamics Simulation

被引:0
|
作者
Yang, Guofei [1 ]
Li, Mingfang [1 ]
Zhang, Ying [1 ]
Li, Xiaohui [1 ]
Xin, Tiantian [1 ]
Hao, Jin [1 ]
机构
[1] Guangzhou Med Univ, Guangdong Prov Clin Res Ctr Obstet & Gynecol, Guangdong Prov Key Lab Major Obstet Dis, Dept Dermatol,Affiliated Hosp 3, Guangzhou, Peoples R China
关键词
Rehmannioside A; Systemic lupus erythematosus; Network pharmacology; Molecular docking; Molecular dynamics simulation; MOUSE MODEL; T-CELLS; SURVIVAL; PROLIFERATION; INHIBITION; DISEASE; TARGET; GENE; TH17;
D O I
10.1007/s12013-024-01435-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effect of rehmannioside A (ReA) on systemic lupus erythematosus (SLE) is not clear and needs further study. In this study, SLE-related targets were obtained from the DisGeNet and GeneCards databases, while ReA-related targets were obtained from the SwissTarget and SuperPred databases. A protein-protein interaction network of intersected targets was constructed using the STRING platform. After selecting the intersected targets, GO and KEGG enrichment analyses were performed via the R package "clusterProfiler". The relationships between ReA and various core targets were assessed via molecular docking, and molecular dynamics simulation was conducted for optimal core protein-compound complexes obtained by molecular docking. The top five targets in the ranking of degree value were HSP90AA1, HIF1A, PIK3CA, MTOR, and TLR4. Significant biological processes mainly included response to oxidative stress and response to reactive oxygen species. The potential pathways of ReA in the treatment of SLE mainly focused on the PI3K-Akt signaling pathway, neutrophil extracellular trap formation, and Apoptosis. Molecular docking showed that ReA had the highest binding affinity for mTOR, suggesting that mTOR is a key target of ReA against SLE. Molecular dynamics simulations revealed good binding abilities between ReA and mTOR. In conclusion, ReA exerts its effects on SLE through multiple targets and pathways, with mTOR being a key target of ReA against SLE.
引用
收藏
页码:3489 / 3498
页数:10
相关论文
共 50 条
  • [21] Exploration of the possible mechanisms of Ling Gui Zhu Gan decoction in nephrotic syndrome based on network pharmacology, molecular docking and molecular dynamics simulation
    Shi, Li
    Deng, Yuanjun
    Luo, Denggui
    Li, Lei
    Kuang, Xuyi
    Qi, Airong
    Fu, Bo
    MEDICINE, 2023, 102 (29) : E34446
  • [22] Exploring the Molecular Mechanisms of Herbs in the Treatment of Hyperlipidemia Based on Network Pharmacology and Molecular Docking
    Cheng, Xiao
    Sun, Geng
    Meng, Li
    Liu, Yueli
    Wen, Jiangnan
    Zhao, Xiaoli
    Cai, Wenhui
    Xin, Huawei
    Liu, Yu
    Hao, Chunxiang
    JOURNAL OF MEDICINAL FOOD, 2024, 27 (11) : 1092 - 1105
  • [23] Potential Mechanism by which Eriodictyol Protects against Doxorubicin-induced Cardiotoxicity based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
    Qin, Chunmeng
    Sun, Mei
    Lv, Feng
    Du, Dan
    Li, Wenjun
    Liu, Songqing
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2024,
  • [24] The Molecular Mechanisms of Bergapten Against Abdominal Aortic Aneurysm: Evidence From Network Pharmacology, Molecular Docking/Dynamics, and Experimental Validation
    Xu, Fujia
    Luo, Sihan
    Huang, Zhenhua
    Wang, Junfen
    Li, Tian
    Zhong, Lintao
    Si, Xiaoyun
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2025, 126 (04)
  • [25] Potential Molecular Mechanisms of Zhibai Dihuang Wan in Systemic Lupus Erythematosus Based on Network Biology
    Yang, Zi
    Xie, Rui-fei
    Zhong, Min-hong
    Xie, Guan-qun
    Fan, Yong-sheng
    Zhao, Ting
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2020, 2020
  • [26] Exploring the therapeutic mechanisms of Gleditsiae Spina acting on pancreatic cancer via network pharmacology, molecular docking and molecular dynamics simulation
    Duan, Hongtao
    Zhang, Rui
    Yuan, Lu
    Liu, Yiyuan
    Asikaer, Aiminuer
    Liu, Yang
    Shen, Yan
    RSC ADVANCES, 2023, 13 (20) : 13971 - 13984
  • [27] Exploring the mechanisms of Yuanhu Zhitong oral liquid for primary dysmenorrhea through network pharmacology, molecular docking, and molecular dynamics simulation
    Zhang, Cheng-Rui
    Zhang, Dai-Yan
    Gao, Jin
    Cao, Zhi-Ming
    Hu, Yuan-Jia
    REPRODUCTIVE AND DEVELOPMENTAL MEDICINE, 2024, 8 (03) : 138 - 150
  • [28] Exploring the mechanisms of Yuanhu Zhitong oral liquid for primary dysmenorrhea through network pharmacology, molecular docking, and molecular dynamics simulation
    Zhang ChengRui
    Zhang DaiYan
    Gao Jin
    Cao ZhiMing
    Hu YuanJia
    生殖与发育医学(英文), 2024, 08 (03)
  • [29] Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation to Elucidate the Molecular Targets and Potential Mechanism of Phoenix dactylifera (Ajwa Dates) against Candidiasis
    Adnan, Mohd
    Siddiqui, Arif Jamal
    Ashraf, Syed Amir
    Bardakci, Fevzi
    Alreshidi, Mousa
    Badraoui, Riadh
    Noumi, Emira
    Tepe, Bektas
    Sachidanandan, Manojkumar
    Patel, Mitesh
    PATHOGENS, 2023, 12 (11):
  • [30] Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes
    Luo, Wenfeng
    Deng, Jie
    He, Jiecheng
    Yin, Liang
    You, Rong
    Zhang, Lingkun
    Shen, Jian
    Han, Zeping
    Xie, Fangmei
    He, Jinhua
    Guan, Yanqing
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2023, 27 (14) : 1959 - 1974