Optimizing Genomic Parental Selection for Categorical and Continuous-Categorical Multi-Trait Mixtures

被引:0
|
作者
Villar-Hernandez, Bartolo de Jesus [1 ]
Perez-Rodriguez, Paulino [2 ]
Vitale, Paolo [1 ]
Gerard, Guillermo [1 ]
Montesinos-Lopez, Osval A. [3 ]
Saint Pierre, Carolina [1 ]
Crossa, Jose [1 ,2 ,4 ,5 ,6 ]
Dreisigacker, Susanne [1 ]
机构
[1] Int Maize & Wheat Improvement Ctr CIMMYT, Km 45,Carretera Mexico Veracruz, Texcoco 52640, Estado De Mexic, Mexico
[2] Colegio Postgrad, Montecillos 56230, Estado De Mexic, Mexico
[3] Univ Colima, Fac Telemat, Colima 28040, Estado De Mexic, Mexico
[4] Louisiana State Univ, Baton Rouge, LA 70803 USA
[5] King Saud Univ, Distinguish Scientist Fellowship Program, Riyah 11459, Saudi Arabia
[6] King Saud Univ, Dept Stat & Operat Res, Riyah 11459, Saudi Arabia
基金
比尔及梅琳达.盖茨基金会;
关键词
Bayesian decision theory; genomic prediction; continuous traits; categorical traits; genomic parental selection; mixture traits; PREDICTION; REGRESSION; ACCURACY; MODELS; TOOL;
D O I
10.3390/genes15080995
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This study presents a novel approach for the optimization of genomic parental selection in breeding programs involving categorical and continuous-categorical multi-trait mixtures (CMs and CCMMs). Utilizing the Bayesian decision theory (BDT) and latent trait models within a multivariate normal distribution framework, we address the complexities of selecting new parental lines across ordinal and continuous traits for breeding. Our methodology enhances precision and flexibility in genetic selection, validated through extensive simulations. This unified approach presents significant potential for the advancement of genetic improvements in diverse breeding contexts, underscoring the importance of integrating both categorical and continuous traits in genomic selection frameworks.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Application of multi-trait Bayesian decision theory for parental genomic selection
    de Jesus Villar-Hernandez, Bartolo
    Perez-Elizalde, Sergio
    Martini, Johannes W. R.
    Toledo, Fernando
    Perez-Rodriguez, P.
    Krause, Margaret
    Delia Garcia-Calvillo, Irma
    Covarrubias-Pazaran, Giovanny
    Crossa, Jose
    G3-GENES GENOMES GENETICS, 2021, 11 (02):
  • [2] General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters
    Hadfield, J. D.
    Nakagawa, S.
    JOURNAL OF EVOLUTIONARY BIOLOGY, 2010, 23 (03) : 494 - 508
  • [3] Multi-trait Genomic Selection Methods for Crop Improvement
    Moeinizade, Saba
    Kusmec, Aaron
    Hu, Guiping
    Wang, Lizhi
    Schnable, Patrick S.
    GENETICS, 2020, 215 (04) : 931 - 945
  • [4] A Comparative Study of Single-Trait and Multi-Trait Genomic Selection
    Budhlakoti, Neeraj
    Mishra, Dwijesh Chandra
    Rai, Anil
    Lal, S. B.
    Chaturvedi, Krishna Kumar
    Kumar, Rajeev Ranjan
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (10) : 1100 - 1112
  • [5] Integrating multi-trait genomic selection with simulation strategies to improve grain yield and parental line selection in rice
    Anilkumar, Chandrappa
    Sah, Rameswar Prasad
    Muhammed Azharudheen, T. P.
    Behera, Sasmita
    Mohanty, Soumya Priyadarshini
    Anandan, Annamalai
    Marndi, Bishnu Charan
    Samantaray, Sanghamitra
    ANNALS OF APPLIED BIOLOGY, 2025, 186 (02) : 216 - 227
  • [6] Accuracy of multi-trait genomic selection using different methods
    Mario PL Calus
    Roel F Veerkamp
    Genetics Selection Evolution, 43
  • [7] Accuracy of multi-trait genomic selection using different methods
    Calus, Mario P. L.
    Veerkamp, Roel F.
    GENETICS SELECTION EVOLUTION, 2011, 43
  • [8] Performance of multi-trait genomic selection for Eucalyptus robusta breeding program
    Rambolarimanana, Tahina
    Ramamonjisoa, Lolona
    Verhaegen, Daniel
    Tsy, Jean-Michel Leong Pock
    Jacquin, Laval
    Tuong-Vi Cao-Hamadou
    Makouanzi, Garel
    Bouvet, Jean-Marc
    TREE GENETICS & GENOMES, 2018, 14 (05)
  • [9] Application of multi-trait bayesian decision theory for parental genomic selection (vol 3, pg 1, 2021)
    Villar-Hernandez, Bartolo de Jesus
    Perez-Elizalde, Sergio
    Martini, Johannes W. R.
    Toledo, Fernando
    Perez-Rodriguez, P.
    Krause, Margaret
    Garcia-Calvillo, Irma Delia
    Covarrubias-Pazaran, Giovanny
    Crossa, Jose
    G3-GENES GENOMES GENETICS, 2021, 11 (03):
  • [10] Multi-objective robust optimization using adaptive surrogate models for problems with mixed continuous-categorical parameters
    Moustapha, Maliki
    Galimshina, Alina
    Habert, Guillaume
    Sudret, Bruno
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (12)