Extensions of mod p representations of division algebras

被引:0
作者
Keisling, Andrew [1 ]
Pentland, Dylan [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Harvard Univ, Cambridge, MA USA
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2024年 / 36卷 / 01期
关键词
cohomology; representations; extensions; division algebras;
D O I
10.5802/jtnb.1273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a local field over Q p or F p ((t)), , and let D be a central simple division algebra over F of degree d . In the p-adic case, we assume p > de + 1 where e is the ramification degree over Q p ; otherwise, we need only assume p and d are coprime. For the subgroup I 1 = 1 + Pi D O D of D x we determine the structure of H1(I1, 1 (I 1 , pi) as a representation of D x /I 1 for an arbitrary smooth irreducible F p-representation pi of D x . We use this to compute the group Ext1Dx(pi, 1D x (pi, pi ' ) for arbitrary smooth irreducible representations pi and pi ' of D x . In the p-adic case, via Poincar & eacute; duality we can compute the top cohomology groups and compute the highest degree extensions.
引用
收藏
页码:45 / 74
页数:31
相关论文
共 15 条