Fixed point theorems for t-c-η-ΓF- c- η- ΓF-fuzzy contraction with an application to neutral fractional integro-differential equation with nonlocal conditions

被引:0
作者
Moussaoui, Abdelhamid [1 ]
Amir, Fouad Abdou Ibrahim [1 ]
Radenovic, Stojan [2 ]
Melliani, Said [1 ]
Elomari, Mhamed [1 ]
机构
[1] Sultan Moulay Slimane Univ, Fac Sci & Tech, Lab Appl Math & Sci Comp, Beni Mellal, Morocco
[2] Univ Belgrade, Fac Mech Engn, Belgrade, Serbia
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2024年 / 29卷 / 05期
关键词
fixed point; fuzzy metric; contraction; fractional equation; MAPPINGS;
D O I
10.15388/namc.2024.29.36099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we define a new fuzzy contraction principle, namely, the concept of xi-alpha-eta-Gamma F-mappings, and prove the existence and uniqueness of the fixed point for such class of mappings. To further demonstrate the validity of our results, we furnish an application to neutral fractional integro-differential equations with nonlocal conditions. The presented results unify, generalize, and enhance a number of prior findings in the literature.
引用
收藏
页码:939 / 957
页数:19
相关论文
共 24 条
[1]   Ciric type nonunique fixed point theorems in the frame of fuzzy metric spaces [J].
Dosenovic, Tatjana ;
Rakic, Dusan ;
Radenovic, Stojan ;
Caric, Biljana .
AIMS MATHEMATICS, 2023, 8 (01) :2154-2167
[2]   ON SOME RESULTS IN FUZZY METRIC-SPACES [J].
GEORGE, A ;
VEERAMANI, P .
FUZZY SETS AND SYSTEMS, 1994, 64 (03) :395-399
[3]   FIXED-POINTS IN FUZZY METRIC-SPACES [J].
GRABIEC, M .
FUZZY SETS AND SYSTEMS, 1988, 27 (03) :385-389
[4]   On fixed-point theorems in fuzzy metric spaces [J].
Gregori, V ;
Sapena, A .
FUZZY SETS AND SYSTEMS, 2002, 125 (02) :245-252
[5]   Fixed-Point Theorems in Fuzzy Metric Spaces via Fuzzy F-Contraction [J].
Huang, Huaping ;
Caric, Biljana ;
Dosenovic, Tatjana ;
Rakic, Dusan ;
Brdar, Mirjana .
MATHEMATICS, 2021, 9 (06)
[6]   A new generalization of the Banach contraction principle [J].
Jleli, Mohamed ;
Samet, Bessem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[7]   A New Approach to the Study of Fixed Point Theory for Simulation Functions [J].
Khojasteh, Farshid ;
Shukla, Satish ;
Radenovic, Stojan .
FILOMAT, 2015, 29 (06) :1189-1194
[8]  
KRAMOSIL I, 1975, KYBERNETIKA, V11, P336
[9]   Admissible Almost Type L-Contractions and Fixed Point Results [J].
Melliani, Said ;
Moussaoui, Abdelhamid ;
Chadli, L. S. .
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2020, 2020
[10]   Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric [J].
Mihet, Dorel .
FUZZY SETS AND SYSTEMS, 2008, 159 (06) :739-744