Local connectivity of boundaries of tame Fatou components of meromorphic functions

被引:0
|
作者
Baranski, Krzysztof [1 ]
Fagella, Nuria [2 ,3 ]
Jarque, Xavier [2 ,3 ]
Karpinska, Boguslawa [4 ]
机构
[1] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
[2] Inst Matemat Univ Barcelona IMUB, Dept Matemat & Informat, Gran Via 585, Barcelona 08007, Catalonia, Spain
[3] Barcelona Grad Sch Math BGSMath, Gran Via 585, Barcelona 08007, Catalonia, Spain
[4] Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
关键词
Primary; 37F10; 37F20; 30D05; 30D30; JULIA SET; ITERATION;
D O I
10.1007/s00208-024-02957-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the local connectivity of the boundaries of invariant simply connected attracting basins for a class of transcendental meromorphic maps. The maps within this class need not be geometrically finite or in class B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document}, and the boundaries of the basins (possibly unbounded) are allowed to contain an infinite number of post-singular values, as well as the essential singularity at infinity. A basic assumption is that the unbounded parts of the basins are contained in regions which we call 'repelling petals at infinity', where the map exhibits a kind of 'parabolic' behaviour. In particular, our results apply to a wide class of Newton's methods for transcendental entire maps. As an application, we prove the local connectivity of the Julia set of Newton's method for sinz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sin z$$\end{document}, providing the first non-trivial example of a locally connected Julia set of a transcendental map outside class B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document}, with an infinite number of unbounded Fatou components.
引用
收藏
页码:1779 / 1843
页数:65
相关论文
共 20 条
  • [1] Fatou components and singularities of meromorphic functions
    Baranski, Krzysztof
    Fagella, Nuria
    Jarque, Xavier
    Karpinska, Boguslawa
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 633 - 654
  • [2] Bounded Fatou and Julia components of meromorphic functions
    Marti-Pete, David
    Rempe, Lasse
    Waterman, James
    MATHEMATISCHE ANNALEN, 2025, 391 (01) : 95 - 111
  • [3] Boundedness of components of Fatou sets of entire and meromorphic functions
    Zheng, JH
    Wang, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (10) : 1137 - 1148
  • [4] Iterates of meromorphic functions on escaping Fatou components
    Zheng, Jian-Hua
    Wu, Cheng-Fa
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (06) : 1906 - 1928
  • [5] Unbounded Fatou components of composite transcendental meromorphic functions with finitely many poles
    Maneeruk, Keaitsuda
    Niamsup, Piyapong
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (05): : 1123 - 1129
  • [6] On the simple connectivity of Fatou components
    Cao, CL
    Wang, YF
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (04) : 625 - 630
  • [7] On the Simple Connectivity of Fatou Components
    Chun Lei Cao
    Yue Fei Wang
    Acta Mathematica Sinica, 2002, 18 : 625 - 630
  • [8] On the Simple Connectivity of Fatou Components
    Chun Lei CAO
    Yue Fei WANG Institute of Mathematics. AMSS. Chinese Academy of Sciences. Beijing 100080. P. R. China
    ActaMathematicaSinica(EnglishSeries), 2002, 18 (04) : 625 - 630
  • [9] Functions with no unbounded Fatou components
    Kaur, Ramanpreet
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (07) : 1239 - 1249
  • [10] Hyperbolic entire functions with bounded Fatou components
    Bergweiler, Walter
    Fagella, Nuria
    Rempe-Gillen, Lasse
    COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (04) : 799 - 829