Local connectivity of boundaries of tame Fatou components of meromorphic functions
被引:0
|
作者:
Baranski, Krzysztof
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, PolandUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
Baranski, Krzysztof
[1
]
Fagella, Nuria
论文数: 0引用数: 0
h-index: 0
机构:
Inst Matemat Univ Barcelona IMUB, Dept Matemat & Informat, Gran Via 585, Barcelona 08007, Catalonia, Spain
Barcelona Grad Sch Math BGSMath, Gran Via 585, Barcelona 08007, Catalonia, SpainUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
Fagella, Nuria
[2
,3
]
Jarque, Xavier
论文数: 0引用数: 0
h-index: 0
机构:
Inst Matemat Univ Barcelona IMUB, Dept Matemat & Informat, Gran Via 585, Barcelona 08007, Catalonia, Spain
Barcelona Grad Sch Math BGSMath, Gran Via 585, Barcelona 08007, Catalonia, SpainUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
Jarque, Xavier
[2
,3
]
Karpinska, Boguslawa
论文数: 0引用数: 0
h-index: 0
机构:
Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, PolandUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
Primary;
37F10;
37F20;
30D05;
30D30;
JULIA SET;
ITERATION;
D O I:
10.1007/s00208-024-02957-y
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove the local connectivity of the boundaries of invariant simply connected attracting basins for a class of transcendental meromorphic maps. The maps within this class need not be geometrically finite or in class B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document}, and the boundaries of the basins (possibly unbounded) are allowed to contain an infinite number of post-singular values, as well as the essential singularity at infinity. A basic assumption is that the unbounded parts of the basins are contained in regions which we call 'repelling petals at infinity', where the map exhibits a kind of 'parabolic' behaviour. In particular, our results apply to a wide class of Newton's methods for transcendental entire maps. As an application, we prove the local connectivity of the Julia set of Newton's method for sinz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sin z$$\end{document}, providing the first non-trivial example of a locally connected Julia set of a transcendental map outside class B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document}, with an infinite number of unbounded Fatou components.
机构:
Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, PolandUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
Baranski, Krzysztof
Fagella, Nuria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Barcelona, Inst Matemat, Dept Matemat & Informat, Gran Via 585, E-08007 Barcelona, Catalonia, Spain
Barcelona Grad Sch Math BGSMath, Gran Via 585, Barcelona 08007, Catalonia, SpainUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
Fagella, Nuria
Jarque, Xavier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Barcelona, Inst Matemat, Dept Matemat & Informat, Gran Via 585, E-08007 Barcelona, Catalonia, Spain
Barcelona Grad Sch Math BGSMath, Gran Via 585, Barcelona 08007, Catalonia, SpainUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
Jarque, Xavier
Karpinska, Boguslawa
论文数: 0引用数: 0
h-index: 0
机构:
Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, PolandUniv Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland