ON NONEXISTENCE OF D(n)-QUADRUPLES

被引:0
作者
Franusic, Zrinka [1 ]
Jurasic, Ana [2 ]
机构
[1] Univ Zagreb, Dept Math, Fac Sci, Bijenicka Cesta 30, Zagreb 10000, Croatia
[2] Univ Rijeka, Fac Math, Radmile Matejcic 2, Rijeka 51000, Croatia
关键词
D(n)-quadruples; difference of two squares; ring of polynomials; diophantine equations; DIOPHANTINE M-TUPLES; INTEGERS; RING;
D O I
10.1515/ms-2024-0063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that there is no polynomial D(n)-quadruple in Z[X] for some polynomials n is an element of Z[X] that are not representable as a difference of squares of two polynomials in Z[X].
引用
收藏
页码:835 / 844
页数:10
相关论文
共 50 条
  • [21] Some nonexistence results on generalized difference sets
    Cao, Xiwang
    Sunc, Daying
    APPLIED MATHEMATICS LETTERS, 2008, 21 (08) : 797 - 802
  • [22] SOLVING n(n plus d) . . . (n plus (k-1)d) = by2 WITH P(b) ≤ Ck
    Filaseta, M.
    Laishram, S.
    Saradha, N.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (01) : 161 - 173
  • [23] Triples which are D(n)-sets for several n's
    Adzaga, Nikola
    Dujella, Andrej
    Kreso, Dijana
    Tadic, Petra
    JOURNAL OF NUMBER THEORY, 2018, 184 : 330 - 341
  • [24] Multiple periodic orbits from Hopf bifurcation in a hierarchical neural network with D n x D n -symmetry and delays q
    Hu, Haijun
    Zhang, Xiaoling
    Huang, Chuangxia
    Yang, Zhichun
    Huang, Tingwen
    NEUROCOMPUTING, 2020, 417 : 516 - 527
  • [25] HILBERT'S TENTH PROBLEM FOR FIXED d AND n
    Gasarch, William
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2021, (133): : 26 - 41
  • [26] DIOPHANTINE m-TUPLES WITH THE PROPERTY D(n)
    Becker, Riley
    Murty, M. Ram
    GLASNIK MATEMATICKI, 2019, 54 (01) : 65 - 75
  • [27] Nonexistence conditions of a solution for the congruence xk1+•••+xksN (mod pn)
    Sekigawa, H
    Koyama, K
    MATHEMATICS OF COMPUTATION, 1999, 68 (227) : 1283 - 1297
  • [28] N-prime elements and the primality of x-α in in D[[x]]
    Giau, Le Thi Ngoc
    Toan, Phan Thanh
    Vo, Thieu N.
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (01) : 233 - 241
  • [29] N18 ring: A building block for constructing 1D and 2D polymeric nitrogen frameworks
    Gao, Yuxiang
    Zhang, Ying
    Liu, Shuang
    Jin, Bo
    Guo, Linlin
    Guo, Xu
    Yao, Zhen
    Wang, Peng
    Liu, Bingbing
    SCIENCE BULLETIN, 2024, 69 (24) : 3860 - 3866
  • [30] Grothendieck lines in 3d N=2 SQCD and the quantum K-theory of the Grassmannian
    Closset, Cyril
    Khlaif, Osama
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, (12):