Gibbs measures for a Hard-Core model with a countable set of states

被引:0
|
作者
Rozikov, U. A. [1 ,2 ,3 ]
Khakimov, R. M. [1 ,4 ]
Makhammadaliev, M. T. [4 ]
机构
[1] Acad Sci Uzbek, VI Romanovskiy Inst Math, Tashkent 100174, Uzbekistan
[2] Natl Univ Uzbekistan, Tashkent 100174, Uzbekistan
[3] Karshi State Univ, Karshi 180100, Uzbekistan
[4] Namangan State Univ, Namangan 160107, Uzbekistan
关键词
HC model; configuration; Cayley tree; Gibbs measure; non-probability Gibbs measure; boundary law; POTTS-MODEL; SPIN VALUES; GRAPH;
D O I
10.1142/S0129055X24500399
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we focus on studying the non-probability Gibbs measures for a Hard-Core (HC) model on a Cayley tree of order k >= 2, where the set of integers Z is the set of spin values. It is well known that each Gibbs measure, whether it be a gradient or non-probability measure, of this model corresponds to a boundary law. A boundary law can be thought of as an infinite-dimensional vector function (with strictly positive coordinates) defined at the vertices of the Cayley tree, which satisfies a nonlinear functional equation. Furthermore, every normalizable boundary law corresponds to a Gibbs measure. However, a non-normalizable boundary law can define the gradient or non-probability Gibbs measures. In this paper, we investigate the conditions for uniqueness and non-uniqueness of translation-invariant and periodic non-probability Gibbs measures for the HC model on a Cayley tree of any order k >= 2.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Odd cutsets and the hard-core model on Zd
    Peled, Ron
    Samotij, Wojciech
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (03): : 975 - 998
  • [42] On phase transition in the hard-core model on Zd
    Galvin, D
    Kahn, J
    COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (02): : 137 - 164
  • [43] The hard-core model on random graphs revisited
    Barbier, Jean
    Krzakala, Florent
    Zdeborova, Lenka
    Zhang, Pan
    ELC INTERNATIONAL MEETING ON INFERENCE, COMPUTATION, AND SPIN GLASSES (ICSG2013), 2013, 473
  • [44] Dynamical Gibbs–Non-Gibbs Transitions in Lattice Widom–Rowlinson Models with Hard-Core and Soft-Core Interactions
    Sascha Kissel
    Christof Külske
    Journal of Statistical Physics, 2020, 178 : 725 - 762
  • [45] Hard-core revelations
    Frank Wilczek
    Nature, 2007, 445 : 156 - 157
  • [46] Nonprobability Gibbs measures for the HC model with a countable set of spin values for a “wand”-type graph on a Cayley tree
    R. M. Khakimov
    M. T. Makhammadaliev
    Theoretical and Mathematical Physics, 2022, 212 : 1259 - 1275
  • [47] NONPROBABILITY GIBBS MEASURES FOR THE HC MODEL WITH A COUNTABLE SET OF SPIN VALUES FOR A "WAND"-TYPE GRAPH ON A CAYLEY TREE
    Khakimov, R. M.
    Makhammadaliev, M. T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 212 (03) : 1259 - 1275
  • [48] HARD-CORE AS A PSEUDOMETRIC
    MIGLIETTA, F
    LETTERE AL NUOVO CIMENTO, 1974, 9 (17): : 685 - 689
  • [49] Hard-core value
    Worthington, P
    FORTUNE, 2000, 141 (08) : 46 - 46
  • [50] THE HARD-CORE OF BEAUTY
    ZUMTHOR, P
    DU-DIE ZEITSCHRIFT DER KULTUR, 1992, (05): : 68 - 71