Gibbs measures for a Hard-Core model with a countable set of states

被引:0
|
作者
Rozikov, U. A. [1 ,2 ,3 ]
Khakimov, R. M. [1 ,4 ]
Makhammadaliev, M. T. [4 ]
机构
[1] Acad Sci Uzbek, VI Romanovskiy Inst Math, Tashkent 100174, Uzbekistan
[2] Natl Univ Uzbekistan, Tashkent 100174, Uzbekistan
[3] Karshi State Univ, Karshi 180100, Uzbekistan
[4] Namangan State Univ, Namangan 160107, Uzbekistan
关键词
HC model; configuration; Cayley tree; Gibbs measure; non-probability Gibbs measure; boundary law; POTTS-MODEL; SPIN VALUES; GRAPH;
D O I
10.1142/S0129055X24500399
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we focus on studying the non-probability Gibbs measures for a Hard-Core (HC) model on a Cayley tree of order k >= 2, where the set of integers Z is the set of spin values. It is well known that each Gibbs measure, whether it be a gradient or non-probability measure, of this model corresponds to a boundary law. A boundary law can be thought of as an infinite-dimensional vector function (with strictly positive coordinates) defined at the vertices of the Cayley tree, which satisfies a nonlinear functional equation. Furthermore, every normalizable boundary law corresponds to a Gibbs measure. However, a non-normalizable boundary law can define the gradient or non-probability Gibbs measures. In this paper, we investigate the conditions for uniqueness and non-uniqueness of translation-invariant and periodic non-probability Gibbs measures for the HC model on a Cayley tree of any order k >= 2.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Ferromagnetism in a hard-core boson model
    Fledderjohann, A
    Langari, A
    Müller-Hartmann, E
    Mütter, KH
    EUROPEAN PHYSICAL JOURNAL B, 2005, 43 (04): : 471 - 478
  • [32] Ferromagnetism in a hard-core boson model
    A. Fledderjohann
    A. Langari
    E. Müller-Hartmann
    K.-H. Mütter
    The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 43 : 471 - 478
  • [33] THE HARD-CORE
    BRILL, NQ
    PSYCHIATRIC JOURNAL OF THE UNIVERSITY OF OTTAWA-REVUE DE PSYCHIATRIE DE L UNIVERSITE D OTTAWA, 1984, 9 (01): : 1 - 7
  • [34] On p-adic Gibbs Measures for Hard Core Model on a Cayley Tree
    Gandolfo, D.
    Rozikov, U. A.
    Ruiz, J.
    MARKOV PROCESSES AND RELATED FIELDS, 2012, 18 (04) : 701 - 720
  • [35] A p-adic hard-core model with three states on a Cayley tree
    Khakimov, O. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (04) : 726 - 734
  • [36] On set of p-adic Gibbs measures for the countable state 1D SOS model
    Khakimov, Otabek
    Mukhamedov, Farrukh
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (43)
  • [37] A p-adic hard-core model with three states on a Cayley tree
    O. N. Khakimov
    Siberian Mathematical Journal, 2016, 57 : 726 - 734
  • [38] SIMPLE MODEL FOR DENSITY OF STATES AND MOBILITY OF AN ELECTRON IN A GAS OF HARD-CORE SCATTERERS
    EGGARTER, TP
    COHEN, MH
    PHYSICAL REVIEW LETTERS, 1970, 25 (12) : 807 - +
  • [39] POISSON LIMITS FOR A HARD-CORE CLUSTERING MODEL
    SAUNDERS, R
    KRYSCIO, RJ
    FUNK, GM
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (02) : 294 - 294
  • [40] TREATMENT OF HARD-CORE IN SHELL MODEL CALCULATIONS
    BANERJEE, B
    PARIKH, JC
    RAO, YST
    NUCLEAR PHYSICS A, 1967, A 94 (03) : 481 - &