MRI Diffusion Connectomics-Based Characterization of Progression in Alzheimer's Disease

被引:0
|
作者
Mattie, David [1 ,2 ,3 ]
Pena-Castillo, Lourdes [1 ]
Takahashi, Emi [4 ,5 ]
Levman, Jacob [2 ,5 ,6 ]
机构
[1] Mem Univ Newfoundland, Dept Comp Sci, St John, NF A1C 5S7, Canada
[2] St Francis Xavier Univ, Dept Comp Sci, Antigonish, NS B2G 2W5, Canada
[3] St Francis Xavier Univ, Dept Mkt & Enterprise Syst, Antigonish, NS B2G 2W5, Canada
[4] Harvard Med Sch, Dept Radiol, Boston, MA 02115 USA
[5] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[6] Nova Scotia Hlth Author, Res Innovat & Discovery Ctr Clin Res, Halifax, NS B3J 0EB, Canada
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 16期
基金
加拿大健康研究院; 加拿大创新基金会; 美国国家卫生研究院;
关键词
Alzheimer's disease; diffusion tensor imaging; whole-brain tractography; biomarkers; MILD COGNITIVE IMPAIRMENT; MATTER TRACT INTEGRITY; SUPRAMARGINAL GYRUS; FIBER ORIENTATIONS; BRAIN; TRACTOGRAPHY; NEURODEGENERATION; REGULARIZATION; CONNECTIVITY; TRACKING;
D O I
10.3390/app14167001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Characterizing Alzheimer's disease (AD) progression remains a significant clinical challenge. The initial stages of AD are marked by the accumulation of amyloid-beta plaques and Tau tangles, with cognitive functions often appearing normal, and clinical symptoms may not manifest until up to 20 years after the prodromal period begins. Comprehensive longitudinal studies analyzing brain-wide structural connectomics in the early stages of AD, especially those with large sample sizes, are scarce. In this study, we investigated a longitudinal diffusion-weighted imaging dataset of 264 subjects to assess the predictive potential of diffusion data for AD. Our findings indicate the potential of a simple prognostic biomarker for disease progression based on the hemispheric lateralization of mean tract volume for tracts originating from the supramarginal and paracentral regions, achieving an accuracy of 86%, a sensitivity of 86%, and a specificity of 93% when combined with other clinical indicators. However, diffusion-weighted imaging measurements alone did not provide strong predictive accuracy for clinical variables, disease classification, or disease conversion. By conducting a comprehensive tract-by-tract analysis of diffusion-weighted characteristics contributing to the characterization of AD and its progression, our research elucidates the potential of diffusion MRI as a tool for the early detection and monitoring of neurodegenerative diseases and emphasizes the importance of integrating multi-modal data for enhanced predictive analytics.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Combinatorial Markers of Mild Cognitive Impairment Conversion to Alzheimer's Disease - Cytokines and MRI Measures Together Predict Disease Progression
    Furney, Simon J.
    Kronenberg, Deborah
    Simmons, Andrew
    Guentert, Andreas
    Dobson, Richard J.
    Proitsi, Petroula
    Wahlund, Lars Olof
    Kloszewska, Iwona
    Mecocci, Patrizia
    Soininen, Hilkka
    Tsolaki, Magda
    Vellas, Bruno
    Spenger, Christian
    Lovestone, Simon
    JOURNAL OF ALZHEIMERS DISEASE, 2011, 26 : 395 - 405
  • [32] Diverging Progression of Network Disruption and Atrophy in Alzheimer's Disease and Semantic Dementia
    Andreotti, Jennifer
    Dierks, Thomas
    Wahlund, Lars-Olof
    Grieder, Matthias
    JOURNAL OF ALZHEIMERS DISEASE, 2017, 55 (03) : 981 - 993
  • [33] Comparison of neuropsychiatric symptoms and diffusion tensor imaging correlates among patients with subcortical ischemic vascular disease and Alzheimer's disease
    Tu, Min-Chien
    Huang, Wen-Hui
    Hsu, Yen-Hsuan
    Lo, Chung-Ping
    Deng, Jie Fu
    Huang, Ching-Feng
    BMC NEUROLOGY, 2017, 17
  • [34] Metabolome in progression to Alzheimer's disease
    Oresic, M.
    Hyotylainen, T.
    Herukka, S-K
    Sysi-Aho, M.
    Mattila, I.
    Seppanan-Laakso, T.
    Julkunen, V.
    Gopalacharyulu, P. V.
    Hallikainen, M.
    Koikkalainen, J.
    Kivipelto, M.
    Helisalmi, S.
    Lotjonen, J.
    Soininen, H.
    TRANSLATIONAL PSYCHIATRY, 2011, 1 : e57 - e57
  • [35] MRI morphometry in Alzheimer's disease
    Matsuda, Hiroshi
    AGEING RESEARCH REVIEWS, 2016, 30 : 17 - 24
  • [36] Diffusion Changes in Hippocampal Cingulum in Early Biologically Defined Alzheimer's Disease
    Chen, Qianyun
    Abrigo, Jill
    Deng, Min
    Shi, Lin
    Wang, Yi-Xiang
    Chu, Winnie Chiu Wing
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 91 (03) : 1007 - 1017
  • [37] Diffusion characteristics of the fornix in patients with Alzheimer's disease
    Tang, Shou Xian
    Feng, Qing Liang
    Wang, Gui Hong
    Duan, Shaofeng
    Shan, Bao Ci
    Dai, Jian Ping
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2017, 265 : 72 - 76
  • [38] Multi-shell diffusion MRI of the fornix as a biomarker for cognition in Alzheimer's disease
    Sakaie, Ken
    Koenig, Katherine
    Lerner, Alan
    Appleby, Brian
    Ogrocki, Paula
    Pillai, Jagan A.
    Rao, Stephen
    Leverenz, James B.
    Lowe, Mark J.
    MAGNETIC RESONANCE IMAGING, 2024, 109 : 221 - 226
  • [39] Progression of Corpus Callosum Atrophy in Early Stage of Alzheimer's Disease: MRI Based Study
    Zhu, Minwei
    Gao, Wenpeng
    Wang, Xudong
    Shi, Chen
    Lin, Zhiguo
    ACADEMIC RADIOLOGY, 2012, 19 (05) : 512 - 517
  • [40] Associations between diffusion MRI microstructure and cerebrospinal fluid markers of Alzheimer's disease pathology and neurodegeneration along the Alzheimer's disease continuum
    Moody, Jason F.
    Dean, Douglas C., III
    Kecskemeti, Steve R.
    Blennow, Kaj
    Zetterberg, Henrik
    Kollmorgen, Gwendlyn
    Suridjan, Ivonne
    Wild, Norbert
    Carlsson, Cynthia M.
    Johnson, Sterling C.
    Alexander, Andrew L.
    Bendlin, Barbara B.
    ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING, 2022, 14 (01)