Renal autonomic dynamics in hypertension: how can we evaluate sympathetic activity for renal denervation?

被引:1
作者
Kusayama, Takashi [1 ]
Nagamori, Yuta [1 ]
Takeuchi, Kazutaka [1 ]
Nakagawa, Yoichiro [1 ]
Takamura, Masayuki [1 ]
机构
[1] Kanazawa Univ, Grad Sch Med Sci, Dept Cardiovasc Med, Kanazawa, Ishikawa, Japan
关键词
Autonomic nervous system; Hypertension; Neuromodulation; neuECG; Skin sympathetic nerve activity; HEART-RATE-VARIABILITY; SUBCUTANEOUS NERVE ACTIVITY; VENTRICULAR-ARRHYTHMIAS; BAROREFLEX SENSITIVITY; NEURAL-CONTROL; SLEEP; SYSTEM; INNERVATION; TACHYCARDIA; DYSFUNCTION;
D O I
10.1038/s41440-024-01816-2
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
This review explores the various pathophysiological factors influencing antihypertensive effects, involving the regulation of vascular resistance, plasma volume, cardiac function, and the autonomic nervous system, emphasizing the interconnected processes regulating blood pressure (BP). The kidney's pivotal role in BP control and its potential contribution to hypertension is complicated but important to understand the effective mechanisms of renal denervation (RDN), which may be a promising treatment for resistant hypertension. Excessive stimulation of the sympathetic nervous system or the renin-angiotensin-aldosterone system (RAAS) can elevate BP through various physiological changes, contributing to chronic hypertension. Renal sympathetic efferent nerve activation leads to elevated norepinephrine levels and subsequent cascading effects on vasoconstriction, renin release, and sodium reabsorption. RDN reduces BP in resistant hypertension by potentially disrupting sensory afferent nerves, decreasing feedback activation to the central nervous system, and reducing efferent sympathetic nerve activity in the heart and other structures. RDN may also modulate central sympathetic outflow and inhibit renal renin-angiotensin system overactivation. While evidence for RDN efficacy in hypertension is increasing, accurate patient selection becomes crucial, considering complex interactions that vary among patients. This review also discusses methods to evaluate autonomic nerve activity from the golden standard to new potential examination for finding out optimization in stimulation parameters or rigorous patient selection based on appropriate biomarkers.
引用
收藏
页码:2685 / 2692
页数:8
相关论文
共 49 条
  • [1] ANATOMY OF THE RENAL INNERVATION - INTRARENAL ASPECTS AND GANGLIA OF ORIGIN
    BARAJAS, L
    LIU, L
    POWERS, K
    [J]. CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 1992, 70 (05) : 735 - 749
  • [2] Methods of investigation for cardiac autonomic dysfunction in human research studies
    Bernardi, Luciano
    Spallone, Vincenza
    Stevens, Martin
    Hilsted, Jannik
    Frontoni, Simona
    Pop-Busui, Rodica
    Ziegler, Dan
    Kempler, Peter
    Freeman, Roy
    Low, Phillip
    Tesfaye, Solomon
    Valensi, Paul
    [J]. DIABETES-METABOLISM RESEARCH AND REVIEWS, 2011, 27 (07) : 654 - 664
  • [3] Impact of renal sympathetic denervation on cardiac sympathetic nerve activity evaluated by cardiac MIBG imaging
    Berukstis, Andrius
    Vajauskas, Donatas
    Gargalskaite, Urte
    Misonis, Nerijus
    Burneikaite, Greta
    Zakarkaite, Diana
    Miglinas, Marius
    Laucevicius, Aleksandras
    [J]. EUROINTERVENTION, 2016, 11 (09) : 1070 - 1076
  • [4] Effects of Renal Denervation on Sympathetic Nerve Traffic and Correlates in Drug-Resistant and Uncontrolled Hypertension: A Systematic Review and Meta-Analysis
    Biffi, Annalisa
    Dell'Oro, Raffaella
    Quarti-Trevano, Fosca
    Cuspidi, Cesare
    Corrao, Giovanni
    Mancia, Giuseppe
    Grassi, Guido
    [J]. HYPERTENSION, 2023, 80 (03) : 659 - 667
  • [5] Cardiac Sympathetic Denervation Assessed With 123-Iodine Metaiodobenzylguanidine Imaging Predicts Ventricular Arrhythmias in Implantable Cardioverter-Defibrillator Patients
    Boogers, Mark J.
    Borleffs, C. Jan Willem
    Henneman, Maureen M.
    van Bommel, Rutger J.
    van Ramshorst, Jan
    Boersma, Eric
    Dibbets-Schneider, Petra
    Stokkel, Marcel P.
    van der Wall, Ernst E.
    Schalij, Martin J.
    Bax, Jeroen J.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2010, 55 (24) : 2769 - 2777
  • [6] Anatomical Evidence for Parasympathetic Innervation of the Renal Vasculature and Pelvis
    Cheng, Xiaofeng
    Zhang, Yongsheng
    Chen, Ruixi
    Qian, Shenghui
    Lv, Haijun
    Liu, Xiuli
    Zeng, Shaoqun
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (12): : 2194 - 2210
  • [7] Differential effects of renal denervation on skin and muscle sympathetic nerve traffic in resistant and uncontrolled hypertension
    Dell'Oro, Raffaella
    Quarti-Trevano, Fosca
    Seravalle, Gino
    Cuspidi, Cesare
    Grassi, Guido
    [J]. CLINICAL AUTONOMIC RESEARCH, 2023, 33 (02) : 93 - 100
  • [8] Neural control of renal function
    DiBona, GF
    Kopp, UC
    [J]. PHYSIOLOGICAL REVIEWS, 1997, 77 (01) : 75 - 197
  • [9] Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram
    Doytchinova, Anisiia
    Hassel, Jonathan L.
    Yuan, Yuan
    Lin, Hongbo
    Yin, Dechun
    Adams, David
    Straka, Susan
    Wright, Keith
    Smith, Kimberly
    Wagner, David
    Shen, Changyu
    Salanova, Vicenta
    Meshberger, Chad
    Chen, Lan S.
    Kincaid, John C.
    Coffey, Arthur C.
    Wu, Gang
    Li, Yan
    Kovacs, Richard J.
    Everett, Thomas H.
    Victor, Ronald
    Cha, Yong-Mei
    Lin, Shien-Fong
    Chen, Peng-Sheng
    [J]. HEART RHYTHM, 2017, 14 (01) : 25 - 33
  • [10] Subcutaneous nerve activity and spontaneous ventricular arrhythmias in ambulatory dogs
    Doytchinova, Anisiia
    Patel, Jheel
    Zhou, Shengmei
    Chen, Lan S.
    Lin, Hongbo
    Shen, Changyu
    Everett, Thomas H.
    Lin, Shien-Fong
    Chen, Peng-Sheng
    [J]. HEART RHYTHM, 2015, 12 (03) : 612 - 620