Developing Forest Road Recognition Technology Using Deep Learning-Based Image Processing

被引:0
作者
Lee, Hyeon-Seung [1 ]
Kim, Gyun-Hyung [1 ]
Ju, Hong Sik [1 ]
Mun, Ho-Seong [1 ]
Oh, Jae-Heun [1 ]
Shin, Beom-Soo [2 ,3 ]
机构
[1] Natl Inst Forest Sci, Forest Technol & Management Res Ctr, Pochon 11187, South Korea
[2] Kangwon Natl Univ, Dept Biosyst Engn, 1 Kangwondaehak Gil, Chunchon 24341, South Korea
[3] Kangwon Natl Univ, Grad Sch, Interdisciplinary Program Smart Agr, 1 Kangwondaehak Gil, Chunchon 24341, South Korea
来源
FORESTS | 2024年 / 15卷 / 08期
关键词
autonomous; forestry machines; image processing; deep learning; YOLO; OPERATIONS; MACHINE; TRAILS;
D O I
10.3390/f15081469
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
This study develops forest road recognition technology using deep learning-based image processing to support the advancement of autonomous driving technology for forestry machinery. Images were collected while driving a tracked forwarder along approximately 1.2 km of forest roads. A total of 633 images were acquired, with 533 used for the training and validation sets, and the remaining 100 for the test set. The YOLOv8 segmentation technique was employed as the deep learning model, leveraging transfer learning to reduce training time and improve model performance. The evaluation demonstrates strong model performance with a precision of 0.966, a recall of 0.917, an F1 score of 0.941, and a mean average precision (mAP) of 0.963. Additionally, an image-based algorithm is developed to extract the center from the forest road areas detected by YOLOv8 segmentation. This algorithm detects the coordinates of the road edges through RGB filtering, grayscale conversion, binarization, and histogram analysis, subsequently calculating the center of the road from these coordinates. This study demonstrates the feasibility of autonomous forestry machines and emphasizes the critical need to develop forest road recognition technology that functions in diverse environments. The results can serve as important foundational data for the future development of image processing-based autonomous forestry machines.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Application of Deep Learning-Based Image Processing in Emotion Recognition and Psychological Therapy
    Liu, Yang
    Zhang, Yawen
    Wang, Yuan
    TRAITEMENT DU SIGNAL, 2024, 41 (06) : 2923 - 2933
  • [2] Deep learning-based image processing in optical microscopy
    Sindhoora Kaniyala Melanthota
    Dharshini Gopal
    Shweta Chakrabarti
    Anirudh Ameya Kashyap
    Raghu Radhakrishnan
    Nirmal Mazumder
    Biophysical Reviews, 2022, 14 : 463 - 481
  • [3] Deep Learning-based Image Text Processing Research
    Xiong, Huixuan
    Jin, Kai
    Liu, Jingnian
    Cai, Jiahong
    Xiao, Lijun
    2023 IEEE 9TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD, BIGDATASECURITY, IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING, HPSC AND IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY, IDS, 2023, : 163 - 168
  • [4] Deep learning-based image processing in optical microscopy
    Melanthota, Sindhoora Kaniyala
    Gopal, Dharshini
    Chakrabarti, Shweta
    Kashyap, Anirudh Ameya
    Radhakrishnan, Raghu
    Mazumder, Nirmal
    BIOPHYSICAL REVIEWS, 2022, 14 (02) : 463 - 481
  • [5] Deep Learning-based Weather Image Recognition
    Kang, Li-Wei
    Chou, Ke-Lin
    Fu, Ru-Hong
    2018 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2018), 2018, : 384 - 387
  • [6] Rail image recognition technology based on deep learning
    Xu, Xinci
    Shi, Xiuxia
    Geng, Chenge
    Chen, Xiangxian
    Journal of Railway Science and Engineering, 2024, 21 (12) : 5232 - 5241
  • [7] Image Recognition Technology Based on Deep Learning
    Fuchao Cheng
    Hong Zhang
    Wenjie Fan
    Barry Harris
    Wireless Personal Communications, 2018, 102 : 1917 - 1933
  • [8] Image Recognition Technology Based on Deep Learning
    Cheng, Fuchao
    Zhang, Hong
    Fan, Wenjie
    Harris, Barry
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 102 (02) : 1917 - 1933
  • [9] Deep learning-based image recognition for autonomous driving
    Fujiyoshi, Hironobu
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    IATSS RESEARCH, 2019, 43 (04) : 244 - 252
  • [10] Deep learning-based garbage image recognition algorithm
    Li, Yuefei
    Liu, Wei
    APPLIED NANOSCIENCE, 2021, 13 (2) : 1415 - 1424