Extended Wannier-Stark ladder and electron-pair Bloch oscillations in dimerized non-Hermitian systems

被引:3
作者
Zhang, H. P. [1 ]
Song, Z. [1 ]
机构
[1] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
HAMILTONIANS;
D O I
10.1103/PhysRevB.110.064310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the Hermitian regime, the Wannier-Stark ladder characterizes the eigenstates of an electron in a periodic potential with an applied static electric field. In this work, we extend this concept to the complex regime for a periodic non-Hermitian system under a linear potential. We show that although the energy levels can be complex, they are still equally spaced by a real Bloch frequency. This ensures single-particle Bloch oscillations with a damping (or growing) rate. The system can also support standard two-particle Bloch oscillations under certain conditions. We propose two types of dimerized non-Hermitian systems to demonstrate our results. In addition, we also propose a scheme to demonstrate the results of particle-pair dynamics in a single-particle two-dimensional PT-symmetric square lattice.
引用
收藏
页数:9
相关论文
共 38 条
[11]   Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics [J].
Dorey, P ;
Dunning, C ;
Tateo, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (28) :5679-5704
[12]   Wannier-Stark resonances in optical and semiconductor superlattices [J].
Glück, M ;
Kolovsky, AR ;
Korsch, HJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (03) :103-182
[13]   Quasiclassical analysis of Bloch oscillations in non- Hermitian tight-binding lattices [J].
Graefe, E. M. ;
Korsch, H. J. ;
Rush, A. .
NEW JOURNAL OF PHYSICS, 2016, 18
[14]   Magnetic Bloch oscillations and domain wall dynamics in a near-Ising ferromagnetic chain [J].
Hansen, Ursula B. ;
Syljuasen, Olav F. ;
Jensen, Jens ;
Schaffer, Turi K. ;
Andersen, Christopher R. ;
Boehm, Martin ;
Rodriguez-Rivera, Jose A. ;
Christensen, Niels B. ;
Lefmann, Kim .
NATURE COMMUNICATIONS, 2022, 13 (01)
[15]   Physics counterpart of the PT non-Hermitian tight-binding chain [J].
Jin, L. ;
Song, Z. .
PHYSICAL REVIEW A, 2010, 81 (03)
[16]   On pseudo-Hermitian Hamiltonians and their Hermitian counterparts [J].
Jones, HF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (08) :1741-1746
[17]   Heralded Magnetism in Non-Hermitian Atomic Systems [J].
Lee, Tony E. ;
Chan, Ching-Kit .
PHYSICAL REVIEW X, 2014, 4 (04)
[18]   Exceptional points and Bloch oscillations in non-Hermitian lattices with unidirectional hopping [J].
Longhi, S. .
EPL, 2014, 106 (03)
[19]   Bloch Oscillations in Complex Crystals with PT Symmetry [J].
Longhi, S. .
PHYSICAL REVIEW LETTERS, 2009, 103 (12)
[20]   Non-Hermitian bidirectional robust transport [J].
Longhi, Stefano .
PHYSICAL REVIEW B, 2017, 95 (01)