Extended Wannier-Stark ladder and electron-pair Bloch oscillations in dimerized non-Hermitian systems

被引:3
作者
Zhang, H. P. [1 ]
Song, Z. [1 ]
机构
[1] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
HAMILTONIANS;
D O I
10.1103/PhysRevB.110.064310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the Hermitian regime, the Wannier-Stark ladder characterizes the eigenstates of an electron in a periodic potential with an applied static electric field. In this work, we extend this concept to the complex regime for a periodic non-Hermitian system under a linear potential. We show that although the energy levels can be complex, they are still equally spaced by a real Bloch frequency. This ensures single-particle Bloch oscillations with a damping (or growing) rate. The system can also support standard two-particle Bloch oscillations under certain conditions. We propose two types of dimerized non-Hermitian systems to demonstrate our results. In addition, we also propose a scheme to demonstrate the results of particle-pair dynamics in a single-particle two-dimensional PT-symmetric square lattice.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Macroscopic quantum interference from atomic tunnel arrays [J].
Anderson, BP ;
Kasevich, MA .
SCIENCE, 1998, 282 (5394) :1686-1689
[2]   Non-Hermitian physics [J].
Ashida, Yuto ;
Gong, Zongping ;
Ueda, Masahito .
ADVANCES IN PHYSICS, 2020, 69 (03) :249-435
[3]   Bloch oscillations of atoms in an optical potential [J].
BenDahan, M ;
Peik, E ;
Reichel, J ;
Castin, Y ;
Salomon, C .
PHYSICAL REVIEW LETTERS, 1996, 76 (24) :4508-4511
[4]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[5]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[6]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[7]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[8]  
Bloch Felix., 1928, Z PHYS, V52, P555, DOI DOI 10.1007/BF01339455
[9]   Discretizing light behaviour in linear and nonlinear waveguide lattices [J].
Christodoulides, DN ;
Lederer, F ;
Silberberg, Y .
NATURE, 2003, 424 (6950) :817-823
[10]   Fractional Bloch oscillations in photonic lattices [J].
Corrielli, Giacomo ;
Crespi, Andrea ;
Della Valle, Giuseppe ;
Longhi, Stefano ;
Osellame, Roberto .
NATURE COMMUNICATIONS, 2013, 4