Transcriptional silencing in Saccharomyces cerevisiae: known unknowns

被引:0
作者
Dhillon, Namrita [1 ]
Kamakaka, Rohinton T. [2 ]
机构
[1] Univ Calif Santa Cruz, Dept Biomol Engn, 1156 High St, Santa Cruz, CA 95064 USA
[2] Univ Calif Santa Cruz, Dept MCD Biol, 1156 High St, Santa Cruz, CA 95064 USA
关键词
RESOLUTION STRUCTURAL-ANALYSIS; ORIGIN RECOGNITION COMPLEX; GENE-EXPRESSION; HISTONE H3; YEAST HETEROCHROMATIN; BAH DOMAIN; DIRECTIONAL ESTABLISHMENT; TELOMERIC HETEROCHROMATIN; GENOME ARCHITECTURE; NUCLEOSOME DYNAMICS;
D O I
10.1186/s13072-024-00553-7
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.
引用
收藏
页数:18
相关论文
共 50 条
[41]   Symmetry, asymmetry, and kinetics of silencing establishment in Saccharomyces cerevisiae revealed by single-cell optical assays [J].
Osborne, Erin A. ;
Hiraoka, Yasushi ;
Rine, Jasper .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (04) :1209-1216
[42]   Quiescence in Saccharomyces cerevisiae [J].
Breeden, Linda L. ;
Tsukiyama, Toshio .
ANNUAL REVIEW OF GENETICS, 2022, 56 :253-278
[43]   Zinc finger 4 negatively controls the transcriptional activator Fzf1 in Saccharomyces cerevisiae [J].
Du, Ying ;
Ma, Chaoqun ;
Moore, Stanley A. ;
Xiao, Wei .
MLIFE, 2024, 3 (03) :391-402
[44]   Vesicular Trafficking Systems Impact TORC1-Controlled Transcriptional Programs in Saccharomyces cerevisiae [J].
Kingsbury, Joanne M. ;
Cardenas, Maria E. .
G3-GENES GENOMES GENETICS, 2016, 6 (03) :641-652
[45]   Glucose, Nitrogen, and Phosphate Repletion in Saccharomyces cerevisiae: Common Transcriptional Responses to Different Nutrient Signals [J].
Conway, Michael K. ;
Grunwald, Douglas ;
Heideman, Warren .
G3-GENES GENOMES GENETICS, 2012, 2 (09) :1003-1017
[46]   Diversification of Transcriptional Regulation Determines Subfunctionalization of Paralogous Branched Chain Aminotransferases in the Yeast Saccharomyces cerevisiae [J].
Gonzalez, James ;
Lopez, Geovani ;
Argueta, Stefany ;
Escalera-Fanjul, Ximena ;
el Hafidi, Mohammed ;
Campero-Basaldua, Carlos ;
Strauss, Joseph ;
Riego-Ruiz, Lina ;
Gonzalez, Alicia .
GENETICS, 2017, 207 (03) :975-991
[48]   Physiological and Transcriptional Responses of Anaerobic Chemostat Cultures of Saccharomyces cerevisiae Subjected to Diurnal Temperature Cycles [J].
Hebly, Marit ;
de Ridder, Dick ;
de Hulster, Erik A. F. ;
Cortes, Pilar de la Torre ;
Pronk, Jack T. ;
Daran-Lapujade, Pascale .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2014, 80 (14) :4433-4449
[50]   Dynamics of oscillatory phenotypes in Saccharomyces cerevisiae reveal a network of genome-wide transcriptional oscillators [J].
Chin, Shwe L. ;
Marcus, Ian M. ;
Klevecz, Robert R. ;
Li, Caroline M. .
FEBS JOURNAL, 2012, 279 (06) :1119-1130