Evolutionary Multi/Many-Objective Optimisation via Bilevel Decomposition

被引:0
|
作者
Jiang, Shouyong [1 ,2 ]
Guo, Jinglei [3 ]
Wang, Yong [1 ]
Yang, Shengxiang [4 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[2] Univ Aberdeen, Dept Comp Sci, Aberdeen AB24 3FX, Scotland
[3] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China
[4] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Bilevel decomposition; evolutionary algorithm; many-objective optimisation; multi-objective optimisation; ALGORITHM; MOEA/D; SELECTION;
D O I
10.1109/JAS.2024.124515
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decomposition of a complex multi-objective optimisation problem (MOP) to multiple simple subMOPs, known as M2M for short, is an effective approach to multi-objective optimisation. However, M2M facilitates little communication/collaboration between subMOPs, which limits its use in complex optimisation scenarios. This paper extends the M2M framework to develop a unified algorithm for both multi-objective and many-objective optimisation. Through bilevel decomposition, an MOP is divided into multiple subMOPs at upper level, each of which is further divided into a number of single-objective subproblems at lower level. Neighbouring subMOPs are allowed to share some subproblems so that the knowledge gained from solving one sub-MOP can be transferred to another, and eventually to all the sub-MOPs. The bilevel decomposition is readily combined with some new mating selection and population update strategies, leading to a high-performance algorithm that competes effectively against a number of state-of-the-arts studied in this paper for both multi- and many-objective optimisation. Parameter analysis and component analysis have been also carried out to further justify the proposed algorithm.
引用
收藏
页码:1973 / 1986
页数:14
相关论文
共 50 条
  • [21] A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
    Chen, Jiaxin
    Ding, Jinliang
    Tan, Kay Chen
    Chen, Qingda
    MEMETIC COMPUTING, 2021, 13 (03) : 413 - 432
  • [22] A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization
    Bao, Chunteng
    Gao, Diju
    Gu, Wei
    Xu, Lihong
    Goodman, Erik D.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [23] Ensemble of many-objective evolutionary algorithms for many-objective problems
    Zhou, Yalan
    Wang, Jiahai
    Chen, Jian
    Gao, Shangce
    Teng, Luyao
    SOFT COMPUTING, 2017, 21 (09) : 2407 - 2419
  • [24] Decomposition-based evolutionary algorithm with dual adjustments for many-objective optimization problems?
    Zhao, Chunliang
    Zhou, Yuren
    Hao, Yuanyuan
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75
  • [25] Reference-Inspired Many-Objective Evolutionary Algorithm Based on Decomposition
    Fu, Xiaogang
    Sun, Jianyong
    COMPUTER JOURNAL, 2018, 61 (07) : 1015 - 1037
  • [26] A Meta-Objective Approach for Many-Objective Evolutionary Optimization
    Gong, Dunwei
    Liu, Yiping
    Yen, Gary G.
    EVOLUTIONARY COMPUTATION, 2020, 28 (01) : 1 - 25
  • [27] Many-Objective Evolutionary Algorithms: A Survey
    Li, Bingdong
    Li, Jinlong
    Tang, Ke
    Yao, Xin
    ACM COMPUTING SURVEYS, 2015, 48 (01)
  • [28] A Comparative Study on Decomposition-Based Multi-objective Evolutionary Algorithms for Many-Objective Optimization
    Ma, Xiaoliang
    Yang, Junshan
    Wu, Nuosi
    Ji, Zhen
    Zhu, Zexuan
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2477 - 2483
  • [29] A Decomposition-Based Evolutionary Algorithm with Adaptive Weight Vectors for Multi- and Many-objective Optimization
    Peng, Guang
    Wolter, Katinka
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2020, 2020, 12104 : 149 - 164
  • [30] Ensemble mating selection in evolutionary many-objective search
    Zhang, Yu-Hui
    Gong, Yue-Jiao
    Gu, Tian-Long
    Zhang, Jun
    APPLIED SOFT COMPUTING, 2019, 76 : 294 - 312