Learnable Model Augmentation Contrastive Learning for Sequential Recommendation

被引:0
作者
Hao, Yongjing [1 ]
Zhao, Pengpeng [1 ]
Xian, Xuefeng [2 ]
Liu, Guanfeng [3 ]
Zhao, Lei [1 ]
Liu, Yanchi [4 ]
Sheng, Victor S. [5 ]
Zhou, Xiaofang [6 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
[2] Soochow Vocat Univ, Suzhou 215123, Peoples R China
[3] Macquarie Univ, Sydney, NSW 2109, Australia
[4] Rutgers State Univ, New Brunswick, NJ 08901 USA
[5] Texas Tech Univ, Dept Comp Sci, Lubbock, TX 79409 USA
[6] Hong Kong Univ Sci & Technol, Hong Kong 999077, Peoples R China
关键词
Task analysis; Electronic mail; Data augmentation; Semantics; Markov processes; Data models; Neurons; Contrastive learning; learnable dropout; model augmentation; multi-positive pairs; sequential recommendation;
D O I
10.1109/TKDE.2023.3330426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sequential Recommendation (SR) methods play a crucial role in recommender systems, which aims to capture users' dynamic interest from their historical interactions. Recently, Contrastive Learning (CL), which has emerged as a successful method for sequential recommendation, utilizes various data augmentations to generate contrastive views to mine supervised signals from data to alleviate data sparsity issues. However, most existing sequential data augmentation methods may destroy semantic sequential interaction characteristics. Meanwhile, they often adopt random operations when generating contrastive views leading to suboptimal performance. To this end, in this paper, we propose a Learnable Model Augmentation Contrastive learning for sequential Recommendation (LMA4Rec). Specifically, LMA4Rec first takes the model-based augmentation method to generate constructive views. Then, LMA4Rec uses Learnable Bernoulli Dropout (LBD) to implement learnable model augmentation operations. Next, contrastive learning is used between the contrastive views to extract supervised signals. Furthermore, a novel multi-positive contrastive learning loss alleviates the supervised sparsity issue. Finally, experiments on public datasets show that our LMA4Rec method effectively improved sequential recommendation performance compared with the state-of-the-art baseline methods.
引用
收藏
页码:3963 / 3976
页数:14
相关论文
共 50 条
  • [41] Feature-Aware Contrastive Learning With Bidirectional Transformers for Sequential Recommendation
    Du, Hanwen
    Yuan, Huanhuan
    Zhao, Pengpeng
    Wang, Deqing
    Sheng, Victor S.
    Liu, Yanchi
    Liu, Guanfeng
    Zhao, Lei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8192 - 8205
  • [42] Graph Neural Network-Guided Contrastive Learning for Sequential Recommendation
    Yang, Xing-Yao
    Xu, Feng
    Yu, Jiong
    Li, Zi-Yang
    Wang, Dong-Xiao
    SENSORS, 2023, 23 (12)
  • [43] Temporal Density-aware Sequential Recommendation Networks with Contrastive Learning
    Wang, Jihu
    Shi, Yuliang
    Yu, Han
    Zhang, Kun
    Wang, Xinjun
    Yan, Zhongmin
    Li, Hui
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [44] Multi-interest sequential recommendation with contrastive learning and temporal analysis
    Ma, Xiaowen
    Zhou, Qiang
    Li, Yongjun
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [45] Contrastive Learning with Frequency-Domain Interest Trends for Sequential Recommendation
    Zhang, Yichi
    Yin, Guisheng
    Dong, Yuxin
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 141 - 150
  • [46] Intent Contrastive Learning with Cross Subsequences for Sequential Recommendation
    Qin, Xiuyuan
    Yuan, Huanhuan
    Zhao, Pengpeng
    Liu, Guanfeng
    Zhuang, Fuzhen
    Sheng, Victor S.
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 548 - 556
  • [47] Dual Contrastive Network for Sequential Recommendation
    Lin, Guanyu
    Gao, Chen
    Li, Yinfeng
    Zheng, Yu
    Li, Zhiheng
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 2686 - 2691
  • [48] Diffusion Augmentation for Sequential Recommendation
    Liu, Qidong
    Yan, Fan
    Zhao, Xiangyu
    Du, Zhaocheng
    Guo, Huifeng
    Tang, Ruiming
    Tian, Feng
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 1576 - 1586
  • [49] Contrastive Learning and Deep Fusion Recommendation Model Based on ID Features
    Li, Bing
    Wang, Xile
    Dong, Jiangtao
    Hou, Yuqi
    Yang, Biao
    IEEE ACCESS, 2024, 12 : 163001 - 163015
  • [50] Tca4rec: contrastive learning with popularity-aware asymmetric augmentation for robust sequential recommendation
    Yanan Bai
    Liji Xiao
    Chongjun Xia
    Kexiang Zeng
    Xiaoyu Shi
    Journal of Big Data, 12 (1)