Learnable Model Augmentation Contrastive Learning for Sequential Recommendation

被引:0
|
作者
Hao, Yongjing [1 ]
Zhao, Pengpeng [1 ]
Xian, Xuefeng [2 ]
Liu, Guanfeng [3 ]
Zhao, Lei [1 ]
Liu, Yanchi [4 ]
Sheng, Victor S. [5 ]
Zhou, Xiaofang [6 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
[2] Soochow Vocat Univ, Suzhou 215123, Peoples R China
[3] Macquarie Univ, Sydney, NSW 2109, Australia
[4] Rutgers State Univ, New Brunswick, NJ 08901 USA
[5] Texas Tech Univ, Dept Comp Sci, Lubbock, TX 79409 USA
[6] Hong Kong Univ Sci & Technol, Hong Kong 999077, Peoples R China
关键词
Task analysis; Electronic mail; Data augmentation; Semantics; Markov processes; Data models; Neurons; Contrastive learning; learnable dropout; model augmentation; multi-positive pairs; sequential recommendation;
D O I
10.1109/TKDE.2023.3330426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sequential Recommendation (SR) methods play a crucial role in recommender systems, which aims to capture users' dynamic interest from their historical interactions. Recently, Contrastive Learning (CL), which has emerged as a successful method for sequential recommendation, utilizes various data augmentations to generate contrastive views to mine supervised signals from data to alleviate data sparsity issues. However, most existing sequential data augmentation methods may destroy semantic sequential interaction characteristics. Meanwhile, they often adopt random operations when generating contrastive views leading to suboptimal performance. To this end, in this paper, we propose a Learnable Model Augmentation Contrastive learning for sequential Recommendation (LMA4Rec). Specifically, LMA4Rec first takes the model-based augmentation method to generate constructive views. Then, LMA4Rec uses Learnable Bernoulli Dropout (LBD) to implement learnable model augmentation operations. Next, contrastive learning is used between the contrastive views to extract supervised signals. Furthermore, a novel multi-positive contrastive learning loss alleviates the supervised sparsity issue. Finally, experiments on public datasets show that our LMA4Rec method effectively improved sequential recommendation performance compared with the state-of-the-art baseline methods.
引用
收藏
页码:3963 / 3976
页数:14
相关论文
共 50 条
  • [31] Hyperbolic Contrastive Learning with Model-Augmentation for Knowledge-Aware Recommendation
    Sun, Shengyin
    Ma, Chen
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-RESEARCH TRACK AND DEMO TRACK, PT VIII, ECML PKDD 2024, 2024, 14948 : 199 - 217
  • [32] Mixed Augmentation Contrastive Learning for Graph Recommendation System
    Dong, Zhuolun
    Yang, Yan
    Zhong, Yingli
    WEB AND BIG DATA, APWEB-WAIM 2024, PT II, 2024, 14962 : 130 - 143
  • [33] Influence-Guided Data Augmentation in Graph Contrastive Learning for Recommendation
    Zhang, Qi
    Xi, Heran
    Zhu, Jinghua
    SERVICE-ORIENTED COMPUTING, ICSOC 2023, PT II, 2023, 14420 : 91 - 99
  • [34] Graph contrastive learning for recommendation with generative data augmentation
    Li, Xiaoge
    Wang, Yin
    Wang, Yihan
    An, Xiaochun
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [35] FAGCL: frequency-based augmentation graph contrastive learning for recommendation
    Xu, Jingyu
    Yang, Bo
    Li, Zimu
    Liu, Wei
    Qiao, Hao
    APPLIED INTELLIGENCE, 2025, 55 (01)
  • [36] Graph Similarity Learning Based on Learnable Augmentation and Multi-Level Contrastive Learning
    Feng, Jian
    Guo, Yifan
    Du, Cailing
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 5135 - 5151
  • [37] A Novel Sequential Recommendation Model Based on the Filter and Model Augmentation
    Yu, Tianci
    Chen, Jianxia
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [38] Intent-Guided Bilateral Long and Short-Term Information Mining With Contrastive Learning for Sequential Recommendation
    Niu, Junhui
    Zhou, Wei
    Luo, Fengji
    Zhang, Yihao
    Zeng, Jun
    Wen, Junhao
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2025, 18 (01) : 212 - 225
  • [39] HyperCLR: A Personalized Sequential Recommendation Algorithm Based on Hypergraph and Contrastive Learning
    Zhang, Ruiqi
    Wang, Haitao
    He, Jianfeng
    MATHEMATICS, 2024, 12 (18)
  • [40] Knowledge-Guided Semantically Consistent Contrastive Learning for sequential recommendation
    Shi, Chenglong
    Yan, Surong
    Zhang, Shuai
    Wang, Haosen
    Lin, Kwei-Jay
    NEURAL NETWORKS, 2025, 185