共 50 条
List packing number of bounded degree graphs
被引:1
|作者:
Cambie, Stijn
[1
,2
]
van Batenburg, Wouter Cames
[3
]
Davies, Ewan
[4
]
Kang, Ross J.
[5
]
机构:
[1] Inst Basic Sci IBS, Extremal Combinator & Probabil Grp ECOPRO, Daejeon, South Korea
[2] Katholieke Univ Leuven, Dept Comp Sci, Campus Kulak Kortrijk, B-8500 Kortrijk, Belgium
[3] Delft Univ Technol, Delft Inst Appl Math, Delft, Netherlands
[4] Colorado State Univ, Dept Comp Sci, Ft Collins, CO USA
[5] Univ Amsterdam, Korteweg de Vries Inst Math, Amsterdam, Netherlands
关键词:
Packing of list colourings;
list packing number;
list colouring;
correspondence colouring;
maximum degree;
transversals;
D O I:
10.1017/S0963548324000191
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
We investigate the list packing number of a graph, the least $k$ such that there are always $k$ disjoint proper list-colourings whenever we have lists all of size $k$ associated to the vertices. We are curious how the behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the context of bounded degree graphs. The main question we pursue is whether every graph with maximum degree $\Delta$ has list packing number at most $\Delta +1$ . Our results highlight the subtleties of list packing and the barriers to, for example, pursuing a Brooks'-type theorem for the list packing number.
引用
收藏
页码:807 / 828
页数:22
相关论文