Hankel Matrices Acting on the Dirichlet Space

被引:2
作者
Bao, Guanlong [1 ]
Guo, Kunyu [2 ]
Sun, Fangmei [2 ]
Wang, Zipeng [3 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515821, Guangdong, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hankel matrix; Ces & agrave; ro matrix; Carleson measure; Dirichlet space; Bergman space; HILBERT MATRIX; COMPOSITION OPERATORS; CARLESON MEASURES; CESARO OPERATOR; BERGMAN; NORM; HARDY; MULTIPLIERS;
D O I
10.1007/s00041-024-10112-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of the infinite Hankel matrix acting on analytic function spaces dates back to the influential work of Nehari and Widom on the Hardy space H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2$$\end{document}. Since then, it has been extensively generalized to other settings such as weighted Bergman spaces, Dirichlet type spaces, and M & ouml;bius invariant function spaces. Nevertheless, several fundamental operator-theoretic questions, including the boundedness and compactness, remain unresolved in the context of the Dirichlet space. Motivated by this, via Carleson measures, the Widom type condition, and the reproducing kernel thesis, we obtain: necessary and sufficient conditions for bounded and compact operators induced by Hankel matrices on the Dirichlet space, thereby answering a folk question in this field (Galanopoulos et al. in Result Math 78(3) Paper No. 106, 2023);necessary and sufficient conditions for bounded and compact operators induced by Ces & agrave;ro type matrices on the Dirichlet space. As a beneficial product, we find an intrinsic function-theoretic characterization of functions with positive decreasing Taylor coefficients in the function space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}$$\end{document} throughly studied by Arcozzi et al. (Lond Math Soc II Ser 83(1):1-18, 2011). In addition, we also show that a random Dirichlet function almost surely induces a compact Hankel type operator on the Dirichlet space.
引用
收藏
页数:26
相关论文
共 48 条
[31]   HILBERT MATRIX OPERATOR ON SPACES OF ANALYTIC FUNCTIONS [J].
Lanucha, Bartosz ;
Nowak, Maria ;
Pavlovic, Miroslav .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (01) :161-174
[32]  
Le Gall J-F., 2016, Brownian Motion, Martingales, and Stochastic Calculus, DOI [DOI 10.1007/978-3-319-31089-3, 10.1007/978-3-319-31089-3]
[33]   Exact essential norm of generalized Hilbert matrix operators on classical analytic function spaces [J].
Lindstrom, M. ;
Miihkinen, S. ;
Norrbo, D. .
ADVANCES IN MATHEMATICS, 2022, 408
[34]   ON THE EXACT VALUE OF THE NORM OF THE HILBERT MATRIX OPERATOR ON WEIGHTED BERGMAN SPACES [J].
Lindstrom, Mikael ;
Miihkinen, Santeri ;
Wikman, Niklas .
ANNALES FENNICI MATHEMATICI, 2021, 46 (01) :201-224
[35]   NORM ESTIMATES OF WEIGHTED COMPOSITION OPERATORS PERTAINING TO THE HILBERT MATRIX [J].
Lindstrom, Mikael ;
Miihkinen, Santeri ;
Wikman, Niklas .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (06) :2425-2435
[36]   ON BOUNDED BILINEAR FORMS [J].
NEHARI, Z .
ANNALS OF MATHEMATICS, 1957, 65 (01) :153-162
[37]   GAUSSIAN ANALYTIC FUNCTIONS OF BOUNDED MEAN OSCILLATION [J].
Nishry, Alon ;
Paquette, Elliot .
ANALYSIS & PDE, 2023, 16 (01) :89-117
[38]  
PELLER V.V., 2003, SPRINGER MG MATH
[39]   A NEW CHARACTERIZATION OF DIRICHLET TYPE SPACES AND APPLICATIONS [J].
ROCHBERG, R ;
WU, ZJ .
ILLINOIS JOURNAL OF MATHEMATICS, 1993, 37 (01) :101-122
[40]  
RUDIN W, 1960, J MATH MECH, V9, P203