On Recognition of Low-Dimensional Linear and Unitary Groups by Spectrum

被引:0
作者
Grechkoseeva, M. A. [1 ,2 ]
Panshin, V. V. [1 ]
机构
[1] Novosibirsk State Univ, Novosibirsk, Russia
[2] Sobolev Inst Math, Novosibirsk, Russia
基金
俄罗斯科学基金会;
关键词
simple classical group; element order; recognition by spectrum; 512.542; PRIME GRAPH COMPONENTS; HIGMAN-TYPE THEOREMS; FINITE-GROUP; ELEMENTS;
D O I
10.1134/S0037446624050094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finite groups are isospectral if they have the same sets of element orders. We complete the description of the finite groups isospectral to the simple groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ U_{5}(q) $\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ L_{6}(q) $\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ U_{6}(q) $\end{document}, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ q $\end{document} odd. We also prove that the exceptional groups of Lie type do not occur among the composition factors of finite groups isospectral to simple classical groups.
引用
收藏
页码:1074 / 1095
页数:22
相关论文
共 33 条
[1]  
Bang A. S., 1886, TIDSSKRIFT MAT, V5, P130
[2]   Spectra of finite linear and unitary groups [J].
Buturlakin, A. A. .
ALGEBRA AND LOGIC, 2008, 47 (02) :91-99
[3]   Spectra of Groups E 8(q) [J].
Buturlakin, A. A. .
ALGEBRA AND LOGIC, 2018, 57 (01) :1-8
[4]  
Conway JH, 1985, ATLAS FINITE GROUPS
[5]  
Craven DA, 2023, INVENT MATH, V234, P637, DOI 10.1007/s00222-023-01208-2
[6]  
GeronoG C., 1870, Nouv. Ann. Math. Ser., V10, P204
[7]  
Gorenstein D., 1998, The Classification of the Finite Simple Groups. Number 3
[8]  
GORENSTEIN D, 1968, FINITE GROUPS
[9]   Primitive Prime Divisors of Orders of Suzuki-Ree Groups [J].
Grechkoseeva, M. A. .
ALGEBRA AND LOGIC, 2023, 62 (01) :41-49
[10]  
Grechkoseeva MA, 2020, SIBERIAN MATH J+, V61, P1039, DOI 10.1134/S0037446620060063