Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images

被引:0
作者
Zossou, Vincent-Beni Sena [1 ,2 ,3 ,4 ]
Gnangnon, Freddy Houehanou Rodrigue [5 ]
Biaou, Olivier [6 ,7 ]
de Vathaire, Florent [1 ,2 ,3 ]
Allodji, Rodrigue S. [1 ,2 ,3 ]
Ezin, Eugene C. [8 ,9 ]
机构
[1] Univ Paris Sud, Univ Paris Saclay, Equipe Radiat Epidemiol, UVSQ,CESP, F-94805 Villejuif, France
[2] Inst Natl Sante & Rech Med INSERM, Ctr Rech Epidemiol & Sante Populat CESP, U1018, F-94805 Villejuif, France
[3] Gustave Roussy, Dept Clin Res, Radiat Epidemiol Team, F-94805 Villejuif, France
[4] Univ Abomey Calavi, Ecole Doctorale Sci Ingenieur, BP 526, Abomey Calavi, Benin
[5] CNHU HKM, Dept Visceral Surg, BP 1213, Cotonou, Benin
[6] Univ Abomey Calavi, Fac Sci Sante, BP 188, Cotonou, Benin
[7] CNHU HKM, Dept Radiol, Cotonou, Benin
[8] Univ Abomey Calavi, Inst Format & Rech Informat, BP 526, Cotonou, Benin
[9] Univ Abomey Calavi, Inst Math & Sci Phys, Dangbo, Benin
来源
JOURNAL OF IMAGING INFORMATICS IN MEDICINE | 2024年
关键词
Hepatocellular carcinoma; Metastases; Deep learning; Liver segmentation; Lesions classification; Computed tomography; Convolutional neural networks; CONVOLUTIONAL NEURAL-NETWORKS; CT; CLASSIFICATION; 3-D;
D O I
10.1007/s10278-024-01192-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of 87.65%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$87.65\%$$\end{document} in segmentation and a mean accuracy of 93.97%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93.97\%$$\end{document} in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.
引用
收藏
页码:873 / 886
页数:14
相关论文
共 50 条
  • [41] Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge
    Setio, Arnaud Arindra Adiyoso
    Traverso, Alberto
    de Bel, Thomas
    Berens, Moira S. N.
    van den Bogaard, Cas
    Cerello, Piergiorgio
    Chen, Hao
    Dou, Qi
    Evelina Fantacci, Maria
    Geurts, Bram
    van der Gugten, Robbert
    Heng, Pheng Ann
    Jansen, Bart
    de Kaste, Michael M. J.
    Kotov, Valentin
    Lin, Jack Yu-Hung
    Manders, Jeroen T. M. C.
    Sonora-Mengana, Alexander
    Carlos Garcia-Naranjo, Juan
    Papavasileiou, Evgenia
    Prokop, Mathias
    Saletta, Marco
    Schaefer-Prokop, Cornelia M.
    Scholten, Ernst T.
    Scholten, Luuk
    Snoeren, Miranda M.
    Lopez Torres, Ernesto
    Vandemeulebroucke, Jef
    Walasek, Nicole
    Zuidhof, Guido C. A.
    van Ginneken, Bram
    Jacobs, Colin
    MEDICAL IMAGE ANALYSIS, 2017, 42 : 1 - 13
  • [42] Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images
    Hsu, Dylan G.
    Ballangrud, Ase
    Shamseddine, Achraf
    Deasy, Joseph O.
    Veeraraghavan, Harini
    Cervino, Laura
    Beal, Kathryn
    Aristophanous, Michalis
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (17)
  • [43] Noninvasive Imaging Evaluation Based on Computed Tomography of the Efficacy of Initial Transarterial Chemoembolization to Predict Outcome in Patients with Hepatocellular Carcinoma
    Dai, Yanmei
    Jiang, Huijie
    Feng, Shi-Ting
    Xia, Yuwei
    Li, Jinping
    Zhao, Sheng
    Wang, Dandan
    Zeng, Xu
    Chen, Yusi
    Xin, Yanjie
    Liu, Dongmin
    JOURNAL OF HEPATOCELLULAR CARCINOMA, 2022, 9 : 273 - 288
  • [44] Prediction of microvascular invasion in solitary hepatocellular carcinoma ≤ 5 cm based on computed tomography radiomics
    Liu, Peng
    Tan, Xian-Zhen
    Zhang, Ting
    Gu, Qian-Biao
    Mao, Xian-Hai
    Li, Yan-Chun
    He, Ya-Qiong
    WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (17) : 2015 - 2024
  • [45] An automatic method for segmentation of liver lesions in computed tomography images using deep neural networks
    Araujo, Jose Denes Lima
    da Cruz, Luana Batista
    Ferreira, Jonnison Lima
    Neto, Otilio Paulo da Silva
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 180
  • [46] Clinicopathological features and differential diagnosis of hepatocellular carcinoma in extrahepatic metastases
    Chen, Dingbao
    Li, Zhao
    Song, Qiujing
    Qian, Lihua
    Xie, Batubaiyin
    Zhu, Jiye
    MEDICINE, 2018, 97 (50)
  • [47] Automatic volumetric diagnosis of hepatocellular carcinoma based on four-phase CT scans with minimum extra information
    Ling, Yating
    Ying, Shihong
    Xu, Lei
    Peng, Zhiyi
    Mao, Xiongwei
    Chen, Zhang
    Ni, Jing
    Liu, Qian
    Gong, Shaolin
    Kong, Dexing
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [48] Automatic detection and localization of COVID-19 pneumonia using axial computed tomography images and deep convolutional neural networks
    Polat, Hasan
    Ozerdem, Mehmet Sirac
    Ekici, Faysal
    Akpolat, Veysi
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (02) : 509 - 524
  • [49] Grading of hepatocellular carcinoma based on diffusion weighted images with multiple b-values using convolutional neural networks
    Zhou, Wu
    Wang, Guangyi
    Xie, Guoxi
    Zhang, Lijuan
    MEDICAL PHYSICS, 2019, 46 (09) : 3951 - 3960
  • [50] A correlation of computed tomography perfusion and histopathology in tumor edges of hepatocellular carcinoma
    Rong-Jie Bai
    Jin-Ping Li
    Shao-Hua Ren
    Hui-Jie Jiang
    Xin-Ding Liu
    Zai-Sheng Ling
    Qi Huang
    Guang-Long Feng
    Hepatobiliary&PancreaticDiseasesInternational, 2014, 13 (06) : 612 - 617