Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images

被引:0
|
作者
Zossou, Vincent-Beni Sena [1 ,2 ,3 ,4 ]
Gnangnon, Freddy Houehanou Rodrigue [5 ]
Biaou, Olivier [6 ,7 ]
de Vathaire, Florent [1 ,2 ,3 ]
Allodji, Rodrigue S. [1 ,2 ,3 ]
Ezin, Eugene C. [8 ,9 ]
机构
[1] Univ Paris Sud, Univ Paris Saclay, Equipe Radiat Epidemiol, UVSQ,CESP, F-94805 Villejuif, France
[2] Inst Natl Sante & Rech Med INSERM, Ctr Rech Epidemiol & Sante Populat CESP, U1018, F-94805 Villejuif, France
[3] Gustave Roussy, Dept Clin Res, Radiat Epidemiol Team, F-94805 Villejuif, France
[4] Univ Abomey Calavi, Ecole Doctorale Sci Ingenieur, BP 526, Abomey Calavi, Benin
[5] CNHU HKM, Dept Visceral Surg, BP 1213, Cotonou, Benin
[6] Univ Abomey Calavi, Fac Sci Sante, BP 188, Cotonou, Benin
[7] CNHU HKM, Dept Radiol, Cotonou, Benin
[8] Univ Abomey Calavi, Inst Format & Rech Informat, BP 526, Cotonou, Benin
[9] Univ Abomey Calavi, Inst Math & Sci Phys, Dangbo, Benin
来源
JOURNAL OF IMAGING INFORMATICS IN MEDICINE | 2024年
关键词
Hepatocellular carcinoma; Metastases; Deep learning; Liver segmentation; Lesions classification; Computed tomography; Convolutional neural networks; CONVOLUTIONAL NEURAL-NETWORKS; CT; CLASSIFICATION; 3-D;
D O I
10.1007/s10278-024-01192-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of 87.65%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$87.65\%$$\end{document} in segmentation and a mean accuracy of 93.97%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93.97\%$$\end{document} in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.
引用
收藏
页码:873 / 886
页数:14
相关论文
共 50 条
  • [31] Liver segmentation from computed tomography images using cascade deep learning
    Araujo, Jose Denes Lima
    da Cruz, Luana Batista
    Diniz, Joao Otavio Bandeira
    Ferreira, Jonnison Lima
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [32] Deep learning-based computed tomography applied to the diagnosis of rib fractures
    Lin, Zhen-wei
    Dai, Wei-li
    Lai, Qing-Quan
    Wu, Hong
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2023, 16 (02)
  • [33] An automatic computer-aided diagnosis system for liver tumours on computed tomography images
    Kumar, S. S.
    Moni, R. S.
    Rajeesh, J.
    COMPUTERS & ELECTRICAL ENGINEERING, 2013, 39 (05) : 1516 - 1526
  • [34] Advances in computed tomography and magnetic resonance imaging of hepatocellular carcinoma
    Tiffany Hennedige
    Sudhakar K Venkatesh
    World Journal of Gastroenterology, 2016, 22 (01) : 205 - 220
  • [35] Advances in computed tomography and magnetic resonance imaging of hepatocellular carcinoma
    Hennedige, Tiffany
    Venkatesh, Sudhakar K.
    WORLD JOURNAL OF GASTROENTEROLOGY, 2016, 22 (01) : 205 - 220
  • [36] Anatomical Prior-Based Automatic Segmentation for Cardiac Substructures from Computed Tomography Images
    Wang, Xuefang
    Li, Xinyi
    Du, Ruxu
    Zhong, Yong
    Lu, Yao
    Song, Ting
    BIOENGINEERING-BASEL, 2023, 10 (11):
  • [37] Fate of pulmonary nodules detected by computer-aided diagnosis and physician review on the computed tomography simulation images for hepatocellular carcinoma
    Park, Hyojung
    Kim, Jin-Sung
    Park, Hee Chul
    Oh, Dongryul
    RADIATION ONCOLOGY JOURNAL, 2014, 32 (03): : 116 - 124
  • [38] Diagnosis and Proposed Treatment for COVID-19 Patients Based on Deep Learning Analysis of Computed Tomography Images
    Knapinska, Zofia
    Mulawka, Jan
    Kierzkiewicz, Maciej
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [39] Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge
    Setio, Arnaud Arindra Adiyoso
    Traverso, Alberto
    de Bel, Thomas
    Berens, Moira S. N.
    van den Bogaard, Cas
    Cerello, Piergiorgio
    Chen, Hao
    Dou, Qi
    Evelina Fantacci, Maria
    Geurts, Bram
    van der Gugten, Robbert
    Heng, Pheng Ann
    Jansen, Bart
    de Kaste, Michael M. J.
    Kotov, Valentin
    Lin, Jack Yu-Hung
    Manders, Jeroen T. M. C.
    Sonora-Mengana, Alexander
    Carlos Garcia-Naranjo, Juan
    Papavasileiou, Evgenia
    Prokop, Mathias
    Saletta, Marco
    Schaefer-Prokop, Cornelia M.
    Scholten, Ernst T.
    Scholten, Luuk
    Snoeren, Miranda M.
    Lopez Torres, Ernesto
    Vandemeulebroucke, Jef
    Walasek, Nicole
    Zuidhof, Guido C. A.
    van Ginneken, Bram
    Jacobs, Colin
    MEDICAL IMAGE ANALYSIS, 2017, 42 : 1 - 13
  • [40] Dual energy computed tomography for detection of metastatic lymph nodes in patients with hepatocellular carcinoma
    Zeng, Yu-Rong
    Yang, Qi-Hua
    Liu, Qing-Yu
    Min, Jun
    Li, Hai-Gang
    Liu, Zhi-Feng
    Li, Ji-Xin
    WORLD JOURNAL OF GASTROENTEROLOGY, 2019, 25 (16) : 1986 - 1996