共 50 条
Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images
被引:0
|作者:
Zossou, Vincent-Beni Sena
[1
,2
,3
,4
]
Gnangnon, Freddy Houehanou Rodrigue
[5
]
Biaou, Olivier
[6
,7
]
de Vathaire, Florent
[1
,2
,3
]
Allodji, Rodrigue S.
[1
,2
,3
]
Ezin, Eugene C.
[8
,9
]
机构:
[1] Univ Paris Sud, Univ Paris Saclay, Equipe Radiat Epidemiol, UVSQ,CESP, F-94805 Villejuif, France
[2] Inst Natl Sante & Rech Med INSERM, Ctr Rech Epidemiol & Sante Populat CESP, U1018, F-94805 Villejuif, France
[3] Gustave Roussy, Dept Clin Res, Radiat Epidemiol Team, F-94805 Villejuif, France
[4] Univ Abomey Calavi, Ecole Doctorale Sci Ingenieur, BP 526, Abomey Calavi, Benin
[5] CNHU HKM, Dept Visceral Surg, BP 1213, Cotonou, Benin
[6] Univ Abomey Calavi, Fac Sci Sante, BP 188, Cotonou, Benin
[7] CNHU HKM, Dept Radiol, Cotonou, Benin
[8] Univ Abomey Calavi, Inst Format & Rech Informat, BP 526, Cotonou, Benin
[9] Univ Abomey Calavi, Inst Math & Sci Phys, Dangbo, Benin
来源:
JOURNAL OF IMAGING INFORMATICS IN MEDICINE
|
2024年
关键词:
Hepatocellular carcinoma;
Metastases;
Deep learning;
Liver segmentation;
Lesions classification;
Computed tomography;
Convolutional neural networks;
CONVOLUTIONAL NEURAL-NETWORKS;
CT;
CLASSIFICATION;
3-D;
D O I:
10.1007/s10278-024-01192-w
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of 87.65%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$87.65\%$$\end{document} in segmentation and a mean accuracy of 93.97%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93.97\%$$\end{document} in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.
引用
收藏
页码:873 / 886
页数:14
相关论文