Automatic Diagnosis of Hepatocellular Carcinoma and Metastases Based on Computed Tomography Images

被引:0
|
作者
Zossou, Vincent-Beni Sena [1 ,2 ,3 ,4 ]
Gnangnon, Freddy Houehanou Rodrigue [5 ]
Biaou, Olivier [6 ,7 ]
de Vathaire, Florent [1 ,2 ,3 ]
Allodji, Rodrigue S. [1 ,2 ,3 ]
Ezin, Eugene C. [8 ,9 ]
机构
[1] Univ Paris Sud, Univ Paris Saclay, Equipe Radiat Epidemiol, UVSQ,CESP, F-94805 Villejuif, France
[2] Inst Natl Sante & Rech Med INSERM, Ctr Rech Epidemiol & Sante Populat CESP, U1018, F-94805 Villejuif, France
[3] Gustave Roussy, Dept Clin Res, Radiat Epidemiol Team, F-94805 Villejuif, France
[4] Univ Abomey Calavi, Ecole Doctorale Sci Ingenieur, BP 526, Abomey Calavi, Benin
[5] CNHU HKM, Dept Visceral Surg, BP 1213, Cotonou, Benin
[6] Univ Abomey Calavi, Fac Sci Sante, BP 188, Cotonou, Benin
[7] CNHU HKM, Dept Radiol, Cotonou, Benin
[8] Univ Abomey Calavi, Inst Format & Rech Informat, BP 526, Cotonou, Benin
[9] Univ Abomey Calavi, Inst Math & Sci Phys, Dangbo, Benin
来源
JOURNAL OF IMAGING INFORMATICS IN MEDICINE | 2024年
关键词
Hepatocellular carcinoma; Metastases; Deep learning; Liver segmentation; Lesions classification; Computed tomography; Convolutional neural networks; CONVOLUTIONAL NEURAL-NETWORKS; CT; CLASSIFICATION; 3-D;
D O I
10.1007/s10278-024-01192-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Liver cancer, a leading cause of cancer mortality, is often diagnosed by analyzing the grayscale variations in liver tissue across different computed tomography (CT) images. However, the intensity similarity can be strong, making it difficult for radiologists to visually identify hepatocellular carcinoma (HCC) and metastases. It is crucial for the management and prevention strategies to accurately differentiate between these two liver cancers. This study proposes an automated system using a convolutional neural network (CNN) to enhance diagnostic accuracy to detect HCC, metastasis, and healthy liver tissue. This system incorporates automatic segmentation and classification. The liver lesions segmentation model is implemented using residual attention U-Net. A 9-layer CNN classifier implements the lesions classification model. Its input is the combination of the results of the segmentation model with original images. The dataset included 300 patients, with 223 used to develop the segmentation model and 77 to test it. These 77 patients also served as inputs for the classification model, consisting of 20 HCC cases, 27 with metastasis, and 30 healthy. The system achieved a mean Dice score of 87.65%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$87.65\%$$\end{document} in segmentation and a mean accuracy of 93.97%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93.97\%$$\end{document} in classification, both in the test phase. The proposed method is a preliminary study with great potential in helping radiologists diagnose liver cancers.
引用
收藏
页码:873 / 886
页数:14
相关论文
共 50 条
  • [1] Evaluation of hepatocellular carcinoma with computed tomography perfusion imaging
    Bayraktutan, Ummugulsum
    Kantarci, Abdulmecit
    Ogul, Hayri
    Kizrak, Yesim
    Ozyigit, Omer
    Yuceler, Zeyneb
    Genc, Berhan
    Ozogul, Bunyami
    TURKISH JOURNAL OF MEDICAL SCIENCES, 2014, 44 (02) : 193 - 196
  • [2] Combined computed tomography and magnetic resonance imaging improves diagnosis of hepatocellular carcinoma ≤ 3.0 cm
    Lee, Chul-min
    Choi, Sang Hyun
    Byun, Jae Ho
    Lee, So Jung
    Kim, So Yeon
    Won, Hyung Jin
    Shin, Yong Moon
    Kim, Pyo-Nyun
    HEPATOLOGY INTERNATIONAL, 2021, 15 (03) : 676 - 684
  • [3] Construction of a convolutional neural network classifier developed by computed tomography images for pancreatic cancer diagnosis
    Ma, Han
    Liu, Zhong-Xin
    Zhang, Jing-Jing
    Wu, Feng-Tian
    Xu, Cheng-Fu
    Shen, Zhe
    Yu, Chao-Hui
    Li, You-Ming
    WORLD JOURNAL OF GASTROENTEROLOGY, 2020, 26 (34) : 5156 - 5168
  • [4] Toward a standardized system for hepatocellular carcinoma diagnosis using computed tomography and MRI
    Tang, An
    Cruite, Irene
    Sirlin, Claude B.
    EXPERT REVIEW OF GASTROENTEROLOGY & HEPATOLOGY, 2013, 7 (03) : 269 - 279
  • [5] Prediction microvascular invasion of hepatocellular carcinoma based on tumour margin enhancing pattern in multiphase computed tomography images
    Nimitrungtawee, Natthaphong
    Inmutto, Nakarin
    Amantakul, Amonlaya
    Jantarangkoon, Attaporn
    POLISH JOURNAL OF RADIOLOGY, 2023, 88 : e238 - e243
  • [6] A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images
    I-Cheng Lee
    Yung-Ping Tsai
    Yen-Cheng Lin
    Ting-Chun Chen
    Chia-Heng Yen
    Nai-Chi Chiu
    Hsuen-En Hwang
    Chien-An Liu
    Jia-Guan Huang
    Rheun-Chuan Lee
    Yee Chao
    Shinn-Ying Ho
    Yi-Hsiang Huang
    Cancer Imaging, 24
  • [7] A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images
    Lee, I-Cheng
    Tsai, Yung-Ping
    Lin, Yen-Cheng
    Chen, Ting-Chun
    Yen, Chia-Heng
    Chiu, Nai-Chi
    Hwang, Hsuen-En
    Liu, Chien-An
    Huang, Jia-Guan
    Lee, Rheun-Chuan
    Chao, Yee
    Ho, Shinn-Ying
    Huang, Yi-Hsiang
    CANCER IMAGING, 2024, 24 (01)
  • [8] Spontaneously Ruptured Hepatocellular Carcinoma: Computed Tomography-Based Assessment
    Sandomenico, Fabio
    Arpaia, Valerio
    De Rosa, Ferdinando
    Catalano, Orlando
    Buonaiuto, Roberto Antonino
    Notarangelo, Marianna
    Iovino, Maria
    Giovine, Sabrina
    Brunetti, Arturo
    Scaglione, Mariano
    DIAGNOSTICS, 2023, 13 (06)
  • [9] Diagnostic value for extrahepatic metastases of hepatocellular carcinoma in positron emission tomography/computed tomography scan
    Lee, Ji Eun
    Jang, Jae Young
    Jeong, Soung Won
    Lee, Sae Hwan
    Kim, Sang Gyune
    Cha, Sang-Woo
    Kim, Young Seok
    Cho, Young Deok
    Kim, Hong Soo
    Kim, Boo Sung
    Jin, So Young
    Choi, Deuk Lin
    WORLD JOURNAL OF GASTROENTEROLOGY, 2012, 18 (23) : 2979 - 2987
  • [10] FDG positron emission tomography/computed tomography for the detection of extrahepatic metastases from hepatocellular carcinoma
    Kawaoka, Tomokazu
    Aikata, Hiroshi
    Takaki, Shintaro
    Uka, Kiminori
    Azakami, Takahiro
    Saneto, Hiromi
    Jeong, Soo Cheol
    Kawakami, Yoshiiku
    Takahashi, Shoichi
    Toyota, Naoyuki
    Ito, Katsuhide
    Hirokawa, Yutaka
    Chayama, Kazuaki
    HEPATOLOGY RESEARCH, 2009, 39 (02) : 134 - 142