Incidental findings in research brain MRI: Definition, prevalence and ethical implications

被引:0
作者
de Jong, Kenneth J. [1 ]
Poon, Emma [2 ,3 ]
Foo, Michelle [4 ]
Maingard, Julian [5 ,6 ,7 ,8 ,9 ]
Kok, Hong Kuan [10 ,11 ]
Barras, Christen [12 ,13 ,14 ]
Yazdabadi, Anousha [15 ,16 ]
Shaygi, Benham [17 ]
Fitt, Gregory J. [4 ,18 ]
Egan, Gary [19 ]
Brooks, Mark [3 ,4 ,5 ,20 ,21 ]
Asadi, Hamed [3 ,4 ,5 ,20 ,21 ]
机构
[1] Epworth Healthcare, Emergency Dept, Melbourne, Vic, Australia
[2] Monash Hlth, Dept Imaging, Melbourne, Vic, Australia
[3] Monash Univ, Fac Med Nursing & Hlth Sci, Melbourne, Vic, Australia
[4] Austin Hlth, Dept Radiol, Melbourne, Vic, Australia
[5] Deakin Univ, Sch Med, Geelong, Vic, Australia
[6] Austin Hosp, Intervent Radiol, Melbourne, Vic, Australia
[7] St Vincents Hosp, Intervent Radiol, Melbourne, Vic, Australia
[8] Epworth Med Fdn, Intervent Radiol, Melbourne, Vic, Australia
[9] Austin Hosp, Endovasc Clot Retrieval ECR Serv, Melbourne, Vic, Australia
[10] Northern Imaging Victoria, Intervent Radiol Serv, Melbourne, Vic, Australia
[11] Univ Melbourne, Fac Med Dent & Hlth Sci, Med Northern Hlth, Melbourne, Vic, Australia
[12] Royal Adelaide Hosp, Dept Radiol, Adelaide, SA, Australia
[13] South Australian Hlth & Med Res Inst, Adelaide, SA, Australia
[14] Univ Adelaide, Adelaide, SA, Australia
[15] Univ Melbourne, Melbourne Med Sch, Dept Med Educ, Melbourne, Vic, Australia
[16] Monash Univ, Eastern Hlth, Melbourne, Vic, Australia
[17] London North West Univ Healthcare NHS Trust, London, England
[18] Univ Melbourne, Fac Med Dent & Hlth Sci, Dept Med & Radiol, Melbourne, Vic, Australia
[19] Monash Univ, Monash Biomed Imaging, Melbourne, Vic, Australia
[20] Monash Hlth, NeuroIntervent Radiol Unit, Melbourne, Vic, Australia
[21] Florey Inst Neurosci & Mental Hlth, Melbourne, Vic, Australia
关键词
brain; ethics; incidental findings; informed consent; magnetic resonance imaging; MANAGEMENT; ABNORMALITIES; INDIVIDUALS; HEALTH;
D O I
10.1111/1754-9485.13744
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiological incidental findings (IFs) are previously undetected abnormalities which are unrelated to the original indication for imaging and are unexpectedly discovered. In brain magnetic resonance imaging (MRI), the prevalence of IFs is increasing. By reviewing the literature on IFs in brain MRI performed for research purposes and discussing ethical considerations of IFs, this paper provides an overview of brain IF research results and factors contributing to inconsistencies and considers how the consent process can be improved from an ethical perspective. We found that despite extensive literature regarding IFs in research MRI of the brain, there are major inconsistencies in the reported prevalence, ranging from 1.3% to 99%. Many factors appear to contribute to this broad range: lack of standardised definition, participant demographics variance, heterogenous MRI scanner strength and sequences, reporter variation and results classification. We also found significant discrepancies in the review, consent and clinical communication processes pertaining to the ethical nature of these studies. These findings have implications for future studies, particularly those involving artificial intelligence. Further research, particularly in relation to MRI brain IFs would be useful to explore the generalisability of study results.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 51 条
[1]  
Bartneck C., 2021, An introduction to ethics in robotics and AI, P61, DOI [10.1007/978-3-030-51110-48, DOI 10.1007/978-3-030-51110-4_8, DOI 10.1007/978-3-030-51110-48]
[2]  
Baumgart D, 2007, HERZ, V32, P387, DOI 10.1007/s00059-007-3020-1
[3]   Prevalence, Clinical Management, and Natural Course of Incidental Findings on Brain MR Images: The Population-based Rotterdam Scan Study [J].
Bos, Daniel ;
Poels, Marielle M. F. ;
Adams, Hieab H. H. ;
Akoudad, Saloua ;
Cremers, Lotte G. M. ;
Zonneveld, Hazel I. ;
Hoogendam, Yoo Y. ;
Verhaaren, Benjamin F. J. ;
Verlinden, Vincent J. A. ;
Verbruggen, Jasper G. J. ;
Peymani, Abbas ;
Hofman, Albert ;
Krestin, Gabriel P. ;
Vincent, Arnaud J. ;
Feelders, Richard A. ;
Koudstaal, Peter J. ;
van der Lugt, Aad ;
Ikram, M. Arfan ;
Vernooij, Meike W. .
RADIOLOGY, 2016, 281 (02) :507-515
[4]  
BRYAN RN, 1994, AM J NEURORADIOL, V15, P1625
[5]   Incidental Brain MRI Findings in Children: A Systematic Review and Meta-Analysis [J].
Dangouloff-Ros, V ;
Roux, C-J ;
Boulouis, G. ;
Levy, R. ;
Nicolas, N. ;
Lozach, C. ;
Grevent, D. ;
Brunelle, F. ;
Boddaert, N. ;
Naggara, O. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (11) :1818-1823
[6]   Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study [J].
de Leeuw, FE ;
de Groot, JC ;
Achten, E ;
Oudkerk, M ;
Ramos, LMP ;
Heijboer, R ;
Hofman, A ;
Jolles, J ;
van Gijn, J ;
Breteler, MMB .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2001, 70 (01) :9-14
[7]  
Debnath Jyotindu, 2016, Med J Armed Forces India, V72, P33, DOI [10.1016/j.mjafi.2015.11.012, 10.1016/j.mjafi.2015.11.012]
[8]   Augmented Radiologist Workflow Improves Report Value and Saves Time: A Potential Model for Implementation of Artificial Intelligence [J].
Do, Huy M. ;
Spear, Lillian G. ;
Nikpanah, Moozhan ;
Mirmomen, S. Mojdeh ;
Machado, Laura B. ;
Toscano, Alexandra P. ;
Turkbey, Bads ;
Bagheri, Mohammad Hadi ;
Gulley, James L. ;
Folio, Les R. .
ACADEMIC RADIOLOGY, 2020, 27 (01) :96-105
[9]   Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers [J].
Faron, Anton ;
Sichtermann, Thorsten ;
Teichert, Nikolas ;
Luetkens, Julian A. ;
Keulers, Annika ;
Nikoubashman, Omid ;
Freiherr, Jessica ;
Mpotsaris, Anastasios ;
Wiesmann, Martin .
CLINICAL NEURORADIOLOGY, 2020, 30 (03) :591-598
[10]   A Deep Learning-based Model for Detecting Abnormalities on Brain MR Images for Triaging: Preliminary Results from a Multisite Experience [J].
Gauriau, Romane ;
Bizzo, Bernardo C. ;
Kitamura, Felipe C. ;
Junior, Osvaldo Landi ;
Ferraciolli, Suely F. ;
Macruz, Fabiola B. C. ;
Sanchez, Tiago A. ;
Garcia, Marcio R. T. ;
Vedolin, Leonardo M. ;
Domingues, Romeu C. ;
Gasparetto, Emerson L. ;
Andriole, Katherine P. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (04)